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-A CONCISE ROUTE TO FUNCTIONALIZED 3-ALKOXYCARBONYLINDOLES - 
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Abs t rac t  - The synthesis of methyl indole-3-carboxylate ( 4 )  and methyl 
6-methoxyindole-3-carboxylate (7)  by tandem Michael addition- [3,31 sigmatropic 

rearrangement reaction is described. 

Not surprisingly, numerous synthetic methods of indole skeleton have been reported,' 
however, little is known about the efficient ones for the construction of 3-alkoxycarbonyl- 
indole containing oxygen function on benzene part of the indole nucleus.2 We now wish to 

present a novel approach, i e . ,  tandem Michael addition- 13.31 sigmatropic rearrangement 
reaction, to synthesize those kind of compounds. Since methyl 6-methoxylindole-3- 
carboxylate  ( 7 ) m i g h t  be a suitable starting material for the construction of the CPI 
(cyclopropylpyrroloindole) unit of antitumor antibiotic CC-1065 (1)  which was about 400 

times more potent than adriamycin against L1210 leukemia cell in vitro.3 first of all we 

explored a new method to get (7)( Scheme 1 ). 

Scheme 1 

As a model experiment of tandem Michael addition-13.31 sigmatropic rearrangement reaction, 
indolization of N-phenylbenzohydroxamic acid (2)4  with methyl propiolate was examined 

under a variety of conditions. The desired methyl 1-carbobenzyloxyindole-3carboxylate (3),5 

mp 89.0 - 91.0 T ,  was produced at room temperature under an atmosphere of argon. Some of 
the conditions and yields examined for indolization of the compound ( 2 )  with methyl 

propiolate are listed in the Table. Best result, 89%, was obtained on the reaction using N,N- 
diisopropylethylamine as  base in nitromethane. In order to establish the structure of the 
product (3) ,  the compound (3)  was quantitatively transformed inlo well-known methyl 

indo le -3-carboxyla te  (4) ,  mp 149.5 - 150.5 "C ( lit.6 147.0 - 148 'C ), by a catalytic 

hydrogenation in the presence of 10% palladium-charcoal. 



Regioselective tandem Michael addition-[3,3] sigmatropic rearrangement reaction of benzyl N- 
hydroxy-N-(3-methoxyphenyl)carbamate ( 5 ) , *  prepared from m-nitroanisole,  a lso afforded 
the indole derivative (615 as  a single regioisomer.' In the same manner as previously, the 
catalytic hydrogenation of (6)  gave rise to the compound (7) in 92% yield ( Scheme 2 ). 

Scheme 2 
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Table 

~d Yields of Tandem Michael Addition-[ 3. 3 1 Sigmairopic 
Rearrangement Reaction of Compound 2 

base solvent yield (%) 

a ; N-methylmorpholine b ; 2.0 eq. of methyl propiolate was used. 

As the most plausible mechanism4 that is  accountable for the observations, we propose a 
tandem Michael addition-[3,31 sigmatropic rearrangement process shown in Figure 1. 

Figure 1 
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