STEREOSELECTIVE REDUCTION OF \underline{t} -BUTYLDIMETHYLSILOXY GROUP OF ETHYL 2-TRICIILOROMETHYL-4- \underline{t} -BUTYLDIMETHYLSILOXY-1,3-DIOXAN-4-ACETATES

Koichi Homma and Teruaki Mukaiyama*

Department of Applied Chemistry, Faculty of Science,
Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Abstract — <u>t</u>-Butyldimethylsiloxy group of ethyl 4-<u>t</u>-butyldimethylsiloxy-2-trichloromethyl-1,3-dioxan-4-acetates, easily prepared from 2-trichloromethyl-1,3-dioxan-4-ones, was stereosclectively reduced with triethylsilane by using titanium tetrachloride as a promoter to afford ethyl cis-2-trichloromethyl-1,3-dioxan-4-acetates.

In the previous papar, we have reported that, in the presence of a catalytic amount of $TrSbCl_6$, 2-trichloromethyl-1,3-dioxan-4-ones were stereoselectively attacked by t-butyldimethylsiloxy-1-ethoxyethene to give silylated cyclic hemiketals, ethyl 4-t-butyldimethylsiloxy-2-trichloromethyl-1,3-dioxan-4-acetates (1 and 2). We already reported that siloxy groups of silylated cyclic hemiketals which were derived from lactones with silyl ketene acetal, or τ -, δ - and ε -trimethylsiloxy carbonyl compounds were reduced with Et_3Sill in the presence of a catalytic amount of $TrSbSl_6$ or catalyst system of $SbCl_5$, Me_3SiCl and SnI_2 . However, these catalysts were not effective in the cases of the siloxy group of 1 and 2 probably due to the strong electronegative trichloromethyl group at 2-position. Thus, several Lewis acids were screened for the reduction of the siloxy group of ethyl 4α -t-butyldimethylsiloxy- 6α -methyl- 2α -trichloromethyl- 4β -acetate (1a) (Table 1). Titanium tetrachloride was superior to the other Lewis acids in terms of yield and selectivity.

Table 1. Effect of Lewis Acids

Entry	Lewis acid(equiv.)	Yield / %(2,4-cis/trans) ^{a)}
1.	TiCl ₄ (1.1)	62(98:2)
2	TiCl ₄ (3.0)	91(98:2)
3	SnCl ₄ (3.0)	54(97:3)
4	AlCl ₃ (3.0)	16(96:4)
5	SbC1 ₅ (3.0)	4(97:3)
6	BF ₃ ·Et ₂ 0(3.0)	1(91:9)

a) The selectivity was determined by 400 MHz $^{\rm L}{\rm H}$ nmr.

Next, several 4-t-butyldimethylsiloxy-2-trichloromethyl-1,3-dioxan-4-acetates (1 and 2) were reduced with ${\rm Et_3SiH}$ by use of ${\rm TiCl_4}$ as a promoter to afford ${\rm \underline{cis}}$ -2-trichloromethyl-1,3-dioxan-4-acetates (3) (Table 2).

Scheme 2

Table 2. Reduction of Siloxy Group

Entry	1 or 2	R^1	\mathbb{R}^2	Yield / %(2,4-cis/trans) ^{a)}
1.	2a	Ме	Ħ	92(>99:1)
2	1a	Me	11	91(98:2)
3	2b	Ph	Н	67(97:3)
4	1b	Ph	Н	65(98:2)
5	1c	$^{\rm n-C_7H_{1.5}}$	Ме	94(>99:1)
6	1.d	Ph	Ме	97(>99:1)
7	1e	PhCH ₂ CH ₂	Ме	98(>99:1)

a) The selectivity was determined by 400 MHz 1 H nmr.

2,4-<u>cis</u>-Isomers (3) were stereoselectively prepared Irrespective of the stereochemistry of the siloxy group. The results suggest that the reaction proceeds via the oxonium intermediate, that is, $\rm Et_3SiH$ attacked the oxonium intermediate (4), major conformer, from α -side due to torsional strain and the oxonium intermediate (5), minor conformer from α -side, as well due to 1,3-diaxial interaction.(Scheme 3).

When 1b was reduced using 5 equivalents of Et_3SiH , ethyl 6α -phenyl- 2α -trichloromethyl-1,3-dioxan- 4α -acetate (3b) was obtained in 71% yield along with ethyl 3-hydroxy-5-phenylvalerate (8) in 23% yield. Therefore, we supposed that in the cases of 1b and 2b, alternative pathway became significant because phenyl group at 6-position and hydrogens at 5-position contributed to produce ethyl 3-oxo-5-phenyl-4-pentenoate (6) (Scheme 4).

Scheme 3

Scheme 4

The stcreochemistry of 3 was determined by the NOE analysis (400 MHz 1 H nmr spectrum) for the ring methine protons.

A typical procedure is described for preparation of ethyl 5,5-dimethyl-6 α -phenyl- 2α -trichloromethyl-1,3-dioxan- 4α -acctate (3d): Under argon atmosphere, a solution of 4α -t-butyldimethylsiloxy-5,5-dimethyl- 6α -phenyl- 2α -trichloromethyl-1,3-dioxan- 4β -acctate (1d) (2.63 g, 5.0 mmol) and Et₃SiH (871 mg, 7.5 mmol) in CH₂Cl₂ (30 ml) was added dropwise to a 1.0 molar solution of TiCl₄ in CH₂Cl₂ (15 ml, 15 mmol) at -23 °C, and then the reaction mixture was stirred for 30 min. Then, the reaction was quenched with aqueous saturated NaHCO₃. The organic materials were washed with brine, dried over Na₂SO₄ and evaporated in vacuo. The residue was purified by flash column chromatography on silica gel (10:1 hexane-cthyl acctate as an eluent) to give 3d (1.92 g, 97%).

For the purpose of preparation of $\underline{\text{syn}}$ -1,3-diols, the remove of trichloroethylidene acetal of 3 prepared by the present procedure is now under investigation.

ACKNOWLEDGEMENT

The authors are grateful to Dr. Akio Kinumaki (Tanabe Seiyaku Co. Ltd.) for NOE analysis.

REFERENCES

- 1. K. Homma and T. Mukaiyama, Chemistry Lett., 1990, 161.
- T. Mukaiyama, K. Homma, and H. Takenoshita, <u>Chemistry Lett.</u>, <u>1988</u>, 1725; K.
 Homma and T. Mukaiyama, <u>Chemistry Lett.</u>, <u>1989</u>, 259 and 893.

Received, 12th January, 1990