PREPARATION OF ALKYL-SUBSTITUTED INDOLES IN THE BENZENE PORTION. Part 3¹

Hideaki Muratake and Mitsutaka Natsume* Research Foundation Itsuu Laboratory 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158, Japan

<u>Abstract</u> — Three-step synthesis of 7- and 4-alkyl-1-tosylindoles (9 and 10) was accomplished by combination of the Friedel-Crafts acylation of 4, and the treatment of 7 and 8 with H_2SO_4 in 2-propanol as illustrated in Chart 2. Further a novel synthetic method of 16 was devised from 14 by way of 15.

An alkylindole having its substituents at the benzene portion of the indole nucleus has become an important class of the structural unit for a variety of biologically active natural products, such as ergot alkaloids,² marine alkaloids (hapalindoles³ and trikentrins⁴), tumor promoters (teleocidins A^5 and teleocidins B^6), and tremorgenic mycotoxins (paspaline and its congener⁷). Consequently it is urgently needed to elaborate a general procedure for preparing various types of alkylindoles, where alkyl substituents are located at the 4, 5, 6, and/or 7 positions of indole in the form either of a complex branched alkyl side chain or of an alkyl-substituted alicyclic ring condensed to the indole nucleus. We are on the way of such effort and in this paper we describe the applicability of our novel method of alkylindole synthesis reported in Part 2.¹

Scheme 1

Our previous pathway is composed of two parts: (i) the ready transformation of 2-formyl-1-tosylpyrrole (1) into variously substituted 1-tosyl-2-pyrrolylcarbinol derivatives (2), and (ii) the H₂SO₄-catalyzed cyclization reaction of 2 in refluxing 2-propanol to yield 1-tosylindoles (3) (Scheme 1). To improve this procedure, other variants for the first part are conceivable on the basis of the literatures stating that the Friedel-Crafts reaction on 1-phenylsulfonylpyrrole affords 2-acyl derivatives by use of BF₃-Et₂O, while 3-acyl derivatives are major products using AlCl₃ as a catalyst.⁸⁻¹⁰ Application of these facts to our pathway led us to furnish a three-step synthesis of 4- and 7-alkylindoles (10 and 9) as follows (Scheme 2).

 $\mathbf{R} = \mathbf{a}$: Me; \mathbf{b} : Cyclohexyl; \mathbf{c} : 2-Ethoxycarbonylethyl; \mathbf{d} : 1-Naphthyl

Scheme 2

1-Tosylpyrrole (4) was converted to 2- and 3-acetyl- (5a and 6a), cyclohexanoyl- (5b and 6b), 3ethoxycarbonylpropanoyl- (5c and 6c), and 3-(1-naphthoyl)- (6d) pyrroles as shown in Table 1 by selecting combination of the acylating agents and Lewis acid catalysts. Regioselectivity was fairly good except for the formation of 2-cyclohexanoylpyrrole (5b) of Entry 3. The Grignard reaction on these acylpyrroles (5 and 6) with 2-(1,3-dioxolan-2-yl)ethylmagnesium bromide provided the corresponding tertiary alcohols (7 and 8) in very good yields. In cases of Entries 5 and 6, γ -lactone derivatives (*e.g.*, 7c = 13) were the sole products. Indole cyclization reaction proceeded readily by refluxing 7 or 8 in 6% sulfuric acid containing 2-propanol for 0.25 - 1 h. 1-Tosylindoles (10 or 9) having the substituents at 4- or 7-position were produced in 66 - 82% yields. The lactone ring was opened during the indole synthesis and 2-propyl esters of 3-(1-tosyl-7- and 4-indolyl)prpionic acids (9c and 10c) were obtained in Entries 5 and 6. The tosyl group was easily removed as reported previously either with Mg in methanol¹ in the case of 10b to afford 12b in 96% yield, or by alkaline hydrolysis of 10c and 10d with 10% KOH in DME-MeOH-H₂O (2:1:1) to give methyl 3-(4-indolyl)propionate (12c) (after work-up with diazomethane) and 12d in 89% and 93% yields.

Table 1 Friedel-Crafts Acylation of 1-Tosylpyrrole (4) and Subsequent Formation of 4- and 7-Alkyl-1-tosylindoles (10 and 9)

Entry			Acylation of 4		Grignard Reaction			Indole Synthesis		
	R	x	Reagent ^a	Yield %		Yield %		Reaction Time h	Yield %	
				5	6	7	8		9	10
1	Me	OAc	Α	s [⁸³	8	97		0.25	75 ^b	
2	Me	OAc	В	a l 7	90		95	0.25		77
3	\bigcirc -	Cl	А	⊾∫ ³⁸	51	86		1	69	
4	\bigcirc	Cl	В	טן מ	97		97	0.5		82
5	EtO ₂ C~	Cl	А	[80	10	68 ^c		1	76 ^d	
6	EtO ₂ C ~~	Cl	В	° (16	79		61°	0.5		73 ^d
7		Cl	В	d 1.5	95		84	1		66

a. A: BF₃·OEt₂. B: AlCl₃. b. Lit. l. c. γ-Lactone derivative. d. 2-Propyl ester.

In relating to a structural unit of the precursor (2), the dithioacetal compound (15) was designed as a substrate for the indole cyclization reaction (Scheme 3). At first 1,3-dithiane was added to 2-cyclopentenone in a conjugate manner,¹¹ and the resulting enolate was trapped with chlorotrimethylsilane to yield 17. This was condensed with 1-phenylsulfonyl-2-formylpyrrole (14) using tetrabutylammonium fluoride as a reagent¹² to afford a silyloxy derivative, which was hydrolyzed with an acid to form 15 in 62% yield, calculated from 14. Indole cyclization of 15 and its S-oxide was attempted in several ways with the unsatisfactory results and finally it was found that simple warming of 15 with MeI in DMF was the best procedure to afford a model compound (16) for a synthesis of janthitrem G^7 in 79% yield. This experiment suggested that a novel type of alkylindoles such as 16 can be generally synthesized from three components, *i.e.*, an enone, dithiane, and the pyrrole derivative (14).

Scheme 3

In the next paper,¹³ we describe further examples of application of our $H_2SO_4 - 2$ -propanol method for the indole synthesis.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro-melting point apparatus and are not corrected. Mass spectra were taken on Hitachi RMS-4 spectrometer. Ir absorption spectra were determined on Hitachi 215 spectrophotometer. Nmr spectra were measured at Varian EM 390 spectrometer. Column chromatography was conducted on silica gel, Fuji Davison BW 200 and preparative thin-layer chromatography (ptlc) was carried out on glass plates (20×20 cm) coated with Merck silica gel 60 PF₂₅₄ (1 mm thick). Usual work-up refers to washing the organic layers with water or brine, drying on anhydrous sodium sulfate and evaporation of the solvents under reduced pressure.

2-Acetyl-1-tosylpyrrole (5a) — The Friedel-Crafts reaction on 1-tosylpyrrole (4) was carried out according to the literature⁹ concerning to the reaction on 1-phenylsulfonylpyrrole. Colorless prisms, mp 106-107°C (CH₂Cl₂-hexane). Anal. Calcd for $C_{13}H_{13}NO_3S$: C, 59.30; H, 4.98; N, 5.32. Found: C, 59.21; H, 5.06; N, 5.29. Ms *m*/*z*: 263 (M⁺). Ir (KBr) cm⁻¹: 1672. Nmr (CDCl₃) δ : 2.33 (3H, s), 2.38 (3H, s), 6.30 (1H, dd, J=3.5, 3.5 Hz), 7.02 (1H, dd, J=3.5, 1.5 Hz), 7.28 and 7.88 (A₂B₂, J=8.5 Hz), 7.79 (1H, dd, J=3.5, 1.5 Hz).

3-Acetyl-1-tosylpyrrole (6a) — Colorless needles, mp 89-90°C (CH₂Cl₂-hexane). Anal. Calcd for C₁₃H₁₃NO₃S: C, 59.30; H, 4.98; N, 5.32. Found: C, 59.11; H, 4.92; N, 5.26. Ms *m*/*z*: 263 (M⁺). Ir

(KBr) cm⁻¹: 1660. Nmr (CDCl₃) δ : 2.37 (3H, s), 2.40 (3H, s), 6.67 (1H, dd, J=3, 1.5 Hz), 7.14 (1H, dd, J=3, 3 Hz), 7.34 and 7.82 (A₂B₂, J=8.5 Hz), 7.70-7.82 (1H, m).

2-Cyclohexanoyl-1-tosylpyrrole (5b) — Colorless syrup. Ms m/z: 331 (M⁺). Ir (CHCl₃) cm⁻¹: 1670. Nmr (CDCl₃) δ : 2.34 (3H, s), 2.63-3.02 (1H, m), 6.26 (1H, dd, J=3.5, 3.5 Hz), 6.96 (1H, dd, J=3.5, 1.5 Hz), 7.24 and 7.86 (A₂B₂, J=8.5 Hz), 7.71 (1H, dd, J=3.5, 1.5 Hz).

3-Cyclohexanoyl-1-tosylpyrrole (6b) — Colorless prisms, mp 105-106°C (CH₂Cl₂-hexane). Anal. Calcd for C₁₈H₂₁NO₃S: C, 65.23; H, 6.39; N, 4.23. Found: C, 65.04; H, 6.49; N, 4.17. Ms *m/z*: 331 (M⁺). Ir (KBr) cm⁻¹: 1670. Nmr (CDCl₃) δ: 2.39 (3H,s), 2.64-3.01 (1H, m), 6.64 (1H, dd, J=3.5, 1.5 Hz), 7.09 (1H, dd, J=3.5, 2.5 Hz), 7.29 and 7.78 (A₂B₂, J=8.5 Hz), *ca*. 7.63-7.78 (1H, m).

2-(3-Ethoxycarbonylpropanoyl)-1-tosylpyrrole (5c) — Colorless needles, mp 90.5-91.5°C (CH₂Cl₂-hexane). Anal. Calcd for C₁₇H₁₉NO₅S: C, 58.44; H, 5.48; N, 4.01. Found: C, 58.34; H, 5.42; N, 3.89. Ms *m*/z: 349 (M⁺). Ir (KBr) cm⁻¹: 1730, 1680. Nmr (CDCl₃) δ : 1.16, (3H, t, J=7.5 Hz), 2.36 (3H, s), 2.58 (2H, t, J=6.5 Hz), 3.01 (2H, t, J=6.5 Hz), 4.04 (2H, q, J=7.5 Hz), 6.29 (1H, dd, J=3.5, 3.5 Hz), 7.08 (1H, dd, J=3.5, 2 Hz), 7.25 and 7.85 (A₂B₂, J=8.5 Hz), 7.75 (1H, dd, J=3.5, 2 Hz).

3-(3-Ethoxycarbonylpropanoyl)-1-tosylpyrrole (6c) — Colorless syrup. Ms m/z: 349 (M⁺). Ir (film) cm⁻¹: 1733, 1680. Nmr (CDCl₃) δ : 1.23 (3H, t, J=7.5 Hz), 2.41 (3H, s), 2.67 (2H, t, J=6.5 Hz), 3.07 (2H, t, J=6.5 Hz), 4.12 (2H, q, J=7.5 Hz), 6.67 (1H, dd, J=3.5, 1.5 Hz), 7.13 (1H, dd, J=3.5, 2 Hz), 7.31 and 7.78 (A₂B₂, J=8.5 Hz), ca. 7.71-7.81 (1H, m).

2-(1-naphthoyl)-1-tosylpyrrole (5d) — Colorless syrup. Ms m/z: 375 (M⁺). Ir (CHCl₃) cm⁻¹: 1648. Nmr (CDCl₃) δ : 2.43 (3H, s), 6.22 (1H, dd, J=3.5, 3.5 Hz), 6.51 (1H, dd, J=3.5, 1.5 Hz), ca. 7.20-7.66 (4H, m), 7.34 and 8.03 (A₂B₂, J=8.5 Hz), ca. 7.73-8.14 (3H, m), 7.82 (1H, dd, J=3.5, 1.5 Hz). Hz).

3-(1-naphthoyl)-1-tosylpyrrole (6d) — Colorless syrup. Ms m/z: 375 (M⁺). Ir (CHCl₃) cm⁻¹: 1640. Nmr (CDCl₃) δ : 2.38 (3H, s), 6.79 (1H, dd, J=3.5, 1.5 Hz), 7.14 (1H, dd, J=3.5, 2 Hz), 7.24 and 7.71 (A₂B₂, J= 8.5 Hz).

Grignard Reaction on Acylpyrroles (5 and 6) — Preparation of 8b is shown as a typical example. A solution of 6b (85 mg) in THF (3 ml) was treated at -20°C for 15 min under Ar atmosphere with the Grignard reagent (0.83 ml), prepared from Mg (90 mg) and 2-(1,3-dioxolan-2-yl)ethyl bromide (0.60 ml) in THF (3.4 ml). The reaction was quenched with sat. NH₄Cl-H₂O, and the mixture was extracted with CH₂Cl₂. Usual work-up and purification by ptlc [hexane-EtOAc (5:2)] yielded 8b (108 mg, 97%) as colorless syrup. Ms m/z:433 (M⁺). Nmr (CDCl₃) δ : 2.35 (3H, s), 2.59 (1H, br s, OH), 3.62-4.01 (4H, m), 4.75 (1H, dd, J=4, 4 Hz), 6.08 (1H, dd, J=3, 1.5 Hz), 6.92-7.10 (2H, m), 7.19 and 7.66 (A₂B₂, J=8.5 Hz). In the similar way, 7a,¹ 7b, 8a, and 8d were prepared. For 7c, the reaction was carried out at -53 - -20°C and for 8c at -55 - -47°C. 7b: Colorless syrup. Ms m/z: 433 (M⁺). Nmr (CDCl₃) δ : 2.34 (3H, s), 3.62-4.01 (4H, m), 4.01 (1H, s, OH), 4.72 (1H, dd, J=4.5, 4.5 Hz), 6.10 (1H, dd, J=3.5, 2 Hz), 6.16 (1H, dd, J=3.5, 3.5 Hz), 7.22 and 7.60 (A₂B₂, J=8.5 Hz), 7.28 (1H, dd, J=3.5, 2 Hz). 7c=13: Colorless syrup. Ms m/z: 405 (M⁺). Ir (CHCl₃) cm⁻¹: 1773. Nmr (CDCl₃) δ : 2.34 (3H, s), 3.60-4.03 (4H, m), 4.73 (1H, dd, J=4, 4 Hz), 6.18 (1H, dd, J=3.5, 3.5 Hz), 6.36 (1H, dd, J=3.5, 2 Hz), 7.22 and 7.64 (A₂B₂, J=8.5 Hz), 7.39 (1H, dd, J=3.5, 2 Hz). 8a: Colorless syrup. Ms m/z: 365 (M⁺). Nmr (CDCl₃) δ : 1.40 (3H, s), *ca.* 1.45-1.96 (4H, m), 2.36 (3H, s), 2.76 (1H, s, OH), 3.64-4.03 (4H, m), 4.79

(1H, dd, J=4, 4 Hz), 6.21 (1H, dd, J=2.5, 2.5 Hz), 7.07 (2H, d, J=2.5 Hz), 7.26 and 7.73 (A₂B₂, J=8 Hz). **8c** (γ -lactone compound): Colorless syrup. Ms *m/z*: 405 (M⁺). Ir (CHCl₃) cm⁻¹: 1770. Nmr (CDCl₃) δ : 2.37 (3H, s), 3.63-4.01 (4H, m), 4.76 (1H, dd, J=4, 4 Hz), 6.19 (1H, dd, J=3, 2 Hz), 7.07-7.20 (2H, m), 7.28 and 7.73 (A₂B₂, J=8.5 Hz). **8d**: Colorless syrup. Ms *m/z*: 477 (M⁺). Nmr (CDCl₃) δ : 1.17-1.97 (2H, m), 2.16-2.82 (2H, m), 2.33 (3H, s), 3.22 (1H br s, OH), 3.52-3.93 (4H, m), 4.71 (1H, dd, J=4, 4 Hz), 6.04 (1H, dd, J=3.5, 1.5 Hz), 7.13 and 7.54 (A₂B₂, J=8.5 Hz).

Indole Cyclization Reaction — Synthesis of 4-Cyclohexyl-1-tosylindole (10b) from 8b is a representative. A solution of 8b (73 mg) in 6% H₂SO₄ – 2-propanol (4.5 ml) was refluxed for 30 min. After cooling, H₂O was added and the mixture was extracted with CH₂Cl₂. Reported work-up¹ and ptlc [hexane-EtOAc (9:1)] gave 10b (49 mg, 82%) as colorless syrup. Ms m/z: 353 (M⁺). Nmr (CDCl₃) δ : 2.22 (3H, s), 2.59-3.01 (1H, m), 6.69 (1H, d, J=4 Hz), 7.01 (1H, br d, J=7.5 Hz), 7.10 and 7.71 (A₂B₂, J=8.5 Hz), 7.21 (1H, dd, J=7.5, 7.5 Hz), 7.52 (1H, d, J=4 Hz), 7.79 (1H, br d, J=7.5 Hz). Spectral data of 9a and 10a have been already reported.¹

7-Cyclohexyl-1-tosylindole (9b) — Colorless syrup. Ms m/z: 353 (M⁺). Nmr (CDCl₃) δ : 2.33 (3H, s), 3.27-3.65 (1H, m), 6.62 (1H, d, J=4 Hz), 7.01-7.42 (2H, m), 7.17 and 7.49 (A₂B₂, J=8.5 Hz), 7.74 (1H, d, J=4 Hz).

2-Propyl 3-(l-Tosyl-7-indolyl)propionate (9c) — Colorless syrup. Ms m/z: 385 (M⁺). Ir (CHCl₃) cm⁻¹: 1720. Nmr (CDCl₃) δ : 1.17 (6H, d, J=6 Hz), 2.28 (3H, s), 2.43-2.70 (2H, m), 3.20-3.47 (2H, m), 4.97 (1H, qq, J=6, 6 Hz), 6.62 (1H, d, J=4 Hz), ca. 6.93-7.24 (2H, m), 7.12 and 7.51 (A₂B₂, J=8.5 Hz), 7.33 (1H, dd, J=6.5, 3 Hz), 7.71 (1H, d, J=4 Hz).

2-Propyl 3-(1-Tosyl-4-indolyl)propionate (10c) — Colorless syrup. Ms *m/z*: 385 (M⁺). Ir (CHCl₃) cm⁻¹: 1720. Nmr (CDCl₃) δ: 1.11 (6H, d, J=6.5 Hz), 2.27 (3H, s), 2.58 (2H, t, J=8 Hz), 3.12 (2H, t, J=8 Hz), 4.94 (1H, qq, J=6.5, 6.5 Hz), 6.70 (1H, d, J=3.5 Hz), 7.02 (1H, d, J=7.5 Hz), *ca*. 7.09-7.34 (1H, m), 7.17 and 7.74 (A₂B₂, J=8.5 Hz), 7.56 (1H, d, J=3.5 Hz), 7.86 (1H, d, J=7.5 Hz).

4-(1-Naphthyl)-1-tosylindole (10d) — Colorless syrup. Ms m/z: 397 (M⁺). Nmr (CDCl₃) δ : 2.31 (3H, s), 6.21 (1H, d, J=4 Hz), 7.19 and 7.78 (A₂B₂, J=8.5 Hz), 7.46 (1H, d, J=4 Hz), 7.68-7.98 (2H, m), 8.04 (1H, br d, J=7.5 Hz).

Synthesis of 4-Cyclohexylindole (12b) by Reductive Deprotection of 10b — Previously reported procedure¹ afforded 12b as colorless needles, mp 155-156°C (CH₂Cl₂-hexane). Anal. Calcd for C₁₄H₁₇N: C, 84.37; H, 8.60; N, 7.03. Found: C, 84.32; H, 8.71; N, 6.95. Ms m/z: 199 (M⁺). Nmr (CDCl₃) δ : 1.03-2.19 (10H, m), 2.73-3.14 (1H, m), 6.57 (1H, dd, J=3, 2 Hz), 6.84-7.22 (4H, m), 7.95 (1H, br s).

Synthesis of Methyl 3-(4-Indolyl)propionate (12c) from 10c — 2-Propyl ester (10c) (33 mg) was treated with 10% KOH – DME-MeOH-H₂O (2:1:1) (2 ml) at 50°C for 3 h. After cooling to 0°C, MeOH (2 ml), 10% HCl-H₂O (4.5 ml) and Et₂O solution of CH₂N₂ were added, and the mixture was stirred at 0°C for 15 min. Addition of sat. NH₄Cl-H₂O, extraction with Et₂O, usual work-up, and ptlc [hexane-EtOAc (4:1)] afforded 12c (15.5 mg, 89%) as colorless oil. Ms m/z: 203 (M⁺). Ir (film) cm⁻¹: 3410, 1726. Nmr (CDCl₃) δ : 2.59-2.88 (2H, m), 3.08-3.38 (2H, m), 3.65 (3H, s), 6.46-6.61 (1H, m), 6.88 (1H, dd, J=6.5, 1.5 Hz), 6.97-7.30 (3H, m), 8.20 (1H, br s).

4-(1-Naphthyl)indole (12d) — A solution of 10d (56 mg) in 10% KOH – DME-MeOH-H₂O (2:1:1) (4 ml) was stirred at 35°C for 3 h. Addition of sat. NH₄Cl-H₂O, extraction with CH₂Cl₂, usual work-up, and ptlc [hexane-CH₂Cl₂ (2:3)] afforded 12d (32 mg, 93%) as colorless prisms, mp 201-203°C (CH₂Cl₂-hexane). Anal. Calcd for C₁₈H₁₃N: C, 88.85; H, 5.39; N, 5.76. Found: C, 88.70; H, 5.52; N, 5.77. Ms m/z: 243 (M⁺). Nmr (CDCl₃) δ : 6.10-6.24 (1H, m), 7.11 (1H, dd, J=3, 3 Hz), 7.69-8.01 (3H, m), 8.19 (1H, br s).

2-Formyl-1-phenylsulfonylpyrrole (14) — Employing the procedure for preparation of 2-formyl-1tosylpyrrole,¹ a solution of 2-formylpyrrole (2.480 g) in CH₂Cl₂ (20 ml) was treated with benzenesulfonyl chloride (4.0 ml) in the presence of Et₃N (8 ml) and 4-dimethylaminopyridine (50 mg) to give 14 (5.276 g, 86%) as colorless needles, mp 81-82°C (CH₂Cl₂-hexane). Anal. Calcd for C₁₁H₉NO₃S: C, 56.16; H, 3.86; N, 5.96. Found: C, 56.10; H, 3.97; N, 5.90. Ms m/z: 235 (M⁺). Ir (KBr) cm⁻¹: 1655. Nmr (CDCl₃) δ : 6.93 (1H, dd, J=3.5, 3.5 Hz), 7.14 (1H, dd, J=3.5, 1.5 Hz), 7.36-7.76 (3H, m), 7.76-8.06 (2H, m), 9.93 (1H, s).

3-(1,3-Dithian-2-yl)-1-trimethylsilyloxycyclopentene (17) — A solution of dithiane (247 mg) in THF (4 ml) was treated with 15% BuLi in hexane (1.32 ml) under Ar atmosphere at -80°C for 5 min and at -20°C for 1 h. It was cooled again to -80°C, HMPA (1.20 ml) was added to this, and the mixture was stirred at -80°C for 7 min. A solution of 2-cyclopentenone (161 mg) in THF (2 ml) was further added dropwise and the whole was stirred at $-79 - -66^{\circ}$ C for 1 h and quenched with chlorotrimethylsilane (0.87 ml) at -79°C. After stirring at $-79 - -75^{\circ}$ C for 15 min, Et₃N (1.36 ml) was added at -75° C, the mixture was poured into sat. NaHCO₃-H₂O, and extracted with Et₂O. The organic layer was washed successively with brine, 0.1N citric acid-H₂O, sat. NaHCO₃-H₂O, and brine, dried over anhyd. Na₂SO₄, and evaporated in reduced presure to leave crude 17 (528 mg), which was used without further purification. Nmr (CDCl₃) δ : 0.23 (9H, s), 3.99 (1H, d, J=6.5 Hz), 4.64 (1H, br s).

The Compound (15) — To a solution of 14 (110 mg) and 17 (528 mg) obtained above in THF (5 ml) was added 1.0 *M* Bu₄NF in THF (0.08 ml) under Ar atmosphere at -70°C, and the mixture was stirred at -70 – -62°C for 50 min. Addition of sat. NH₄Cl-H₂O, extraction with Et₂O, and usual work-up gave a residue (577 mg). This was dissolved in DME (9 ml) and treated with 10% HCl-H₂O (1 ml) at 0°C for 15 min and at room temperature for 2 h. Addition of sat. NaHCO₃-H₂O at 0°C, extraction with CH₂Cl₂, usual work-up, and ptlc [benzené-EtOAc (5:1)] afforded 15 (127 mg, 62%), colorless prisms, mp 171-173°C (CH₂Cl₂-MeOH). Anal. Calcd for C₂₀H₂₃NO₄S₃: C, 54.89; H, 5.30; N, 3.20. Found: C, 54.59; H, 5.28; N, 3.16. Ms *m/z*: 437 (M⁺). Ir (KBr) cm⁻¹: 3430, 1732. Nmr (CDCl₃) δ : 3.17 (1H, dd, J=8.5, 3.5 Hz), 6.36 (1H, d, J=4.5, 2.5, 2.5, Hz), 6.36-6.50 (1H, m), 7.32 (1H, dd, J=3.5, 2.4 Hz), 7.38-7.73 (3H, m), 7.73-7.96 (2H, m).

1-Phenylsulfonyl-1,5-dihydrocyclopent[f]indol-7(6H)-one (16) — A solution of 15 (48 mg) and MeI (0.5 ml) in DMF (2 ml) was warmed at 45°C for 57 h. Sat. NaHCO₃-H₂O was added to its ice-cooled mixture, which was extracted with Et₂O. Usual work-up and ptlc [hexane-CH₂Cl₂ (3:1)] afforded 16 (27 mg, 79%), colorless needles, mp 220-221°C (CH₂Cl₂-MeOH). Anal. Calcd for $C_{17}H_{13}NO_3S$: C, 65.58; H, 4.21; N, 4.50. Found: C, 65.35; H, 4.40; N, 4.52. Ms *m*/z: 311 (M⁺). Ir (KBr) cm⁻¹: 1702, 1685, 1613. Nmr (CDCl₃) δ : 2.60-2.84 (2H, m), 3.01-3.28 (2H, m), 6.63 (1H, d, J=4 Hz), 7.23-7.63 (3H, m), 7.50 (1H, s), 7.71 (1H, d, J=4 Hz), 7.78-7.99 (2H, m), 8.33 (1H, s).

ACKNOWLEDGMENT

Authors' thanks are due to Research Laboratories, Shionogi & Co., Ltd., for the measurement of elemental analysis. This work was supported by Grant-in-Aid from the Ministry of Education, Science and Culture, which is gratefully acknowledged.

REFERENCES

- 1. Part 2 : H. Muratake and M. Natsume, Heterocycles, 1989, 29, 783.
- A. Stoll and A. Hofmann, "Alkaloids," Vol. VIII, Academic Press, New York, 1965, 725; P. A. Stadler and P. Stütz, "Alkaloids," Vol. XV, Academic Press, New York, 1975, 1; B. Berde and H. O. Schild, "Ergot Alkaloids and Related Compounds," Springer-Verlag, Berlin, 1978, I.
- R. E. Moore, C. Cheuk, and G. M. L. Patterson, <u>J. Am. Chem. Soc.</u>, 1984, **106**, 6456; R. E. Moore, C. Cheuk, X.-Q. G. Yang, G. M. L. Patterson, R. Bonjouklian, T. A. Smitka, J. S. Mynderse, R. S. Foster, N. D. Jones, J. K. Swartzendruber, and J. B. Deeter, <u>J. Org. Chem.</u>, 1987, **52**, 1036.
- 4. R. J. Capon, J. K. MacLeod, and P. J. Scammells, Tetrahedron, 1986, 42, 6545.
- 5. H. Fujiki and T. Sugimura, <u>Cancer Surveys</u>, 1983, 2, 539.
- Y. Hitotsuyanagi, H. Fujiki, M. Suganuma, N. Aimi, S. Sakai, Y. Endo, K. Shudo, and T. Sugimura, <u>Chem. Pharm. Bull.</u>, 1984, 32, 4233.
- See reference in the literature : A. B. Smith, III and R. Mewshaw, <u>J. Am. Chem. Soc.</u>, 1985, 107, 1769. Janthitrems : A. E. de Jesus, P. S. Steyn, F. R. van Heerden, and R. Vleggaar, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1984, 697.
- R. X. Xu, H. J. Anderson, N. J. Gogan, C. E. Loader, and R. McDonald, <u>Tetrahedron Lett.</u>, 1981, 22, 4899.
- a. J. Rokach, P. Hamel, M. Kakushima, and G. M. Smith, <u>Tetrahedron Lett.</u>, 1981, 22, 4901. b. M. Kakushima, P. Hamel, R. Frenette, and J. Rokach, <u>J. Org. Chem.</u>, 1983, 48, 3214.
- 10. H. J. Anderson and C. E. Loader, Synthesis, 1985, 353.
- 11. C. A. Brown and A. Yamaichi, J. Chem. Soc., Chem. Commun., 1979, 100.
- R. Noyori, K. Yokoyama, J. Sakata, I. Kuwajima, E. Nakamura, and M. Shimizu, <u>J. Am. Chem.</u> Soc., 1977, 99, 1265.
- 13. H. Muratake and M. Natsume, the subsequent paper.

Received, 6th February, 1990