SYNTHESIS OF VINCA ALKALOIDS AND RELATED COMPOUNDS LIII 1 .

A SIMPLE SYNTHESIS OF (\pm) -3-OXOVINCADIFFORMINE AND (\pm) -3-OXOMINOVINE

György Kalaus^a, Chau Phan Dinh^a, Mária Kajtár-Peredy^b, János Brlik^c, Lajos Szabó^a, and Csaba Szántay^{a,b,*}

^aInstitute of Organic Chemistry, Technical University, H-1521 Budapest bCentral Research Institute for Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, Hungary

^CMS Laboratory of Institute for General and Analytical Chemistry, Technical University, H-1521 Budapest, Hungary

<u>Abstract</u> - Starting from compound $\frac{1}{2}$ syntheses of the title compounds were achieved via linear reaction sequences.

We have reported that 2-(ethoxycarbonyl)tryptamine and methyl 4-formylhexanoate react to give the key intermediate $(\frac{1}{2})$ of a convenient syntheses of $(\frac{1}{2})$ -vincadifformine $(\frac{2}{2})$, (+)- ψ -vincadifformine $(\frac{3}{2})$ and $(\frac{1}{2})$ -minovine $(\frac{3}{2})$.

Compound $\frac{1}{2}$ proved to be a useful starting material also for the syntheses of (\pm) -3-oxovincadifformine $(\underline{5})$ and (\pm) -3-oxominovine $(\underline{6})$.

 $\frac{6}{2}$ X=0, $R_1 = R_2 = H$, $R_3 = C_2 H_5$, $R_4 = CH_3$

Le Men et al. reported the synthesis of $\underline{5}$ as an intermediate in their total synthesis of $(\underline{+})$ vincadifformine $(\underline{2})$. It's noteworthy that its 14,15-unsaturated derivative was isolated from Amsonia elliptica. 5

The ester group in compound $\frac{1}{2}$ was reduced with lithium aluminium hydride in THF (-40 $^{\circ}$ C, 3 h) to yield compound $\frac{7}{2}$ in 60 % yield, mp 149-151 $^{\circ}$ C (from methanol-water). Next, the elongation of the carbon chain was effected according to Kutney's method as follows. Benzoylation of $\frac{7}{2}$ with benzoyl chloride in dichloromethane, in the presence of triethylamine and 4-dimethylaminopyridine catalyst, at -5 $^{\circ}$ C for 1 h, gave $\frac{8}{2}$ as an oil in 87 % yield. It was made to react with potassium cyanide in dry acetonitrile (80 $^{\circ}$ C, 5 h) to give compound $\frac{9}{2}$ in 87 % yield, mp 151-152 $^{\circ}$ C (from acetonitrile-ether mixture). The product was treated at room temperature for 50 min with methanol saturated with hydrogen chloride. Surprisingly instead of the expected substance $\frac{12}{2}$ the product was proved to be compound $\frac{10}{2}$ of an unusual structure, formed in 65 % yield, mp 227-229 $^{\circ}$ C.

$$\frac{7}{2}$$
 R = CH₂OH
 $\frac{8}{2}$ R = CH₂-O-C-C₆H₅
 $\frac{9}{2}$ R = CH₂COOH
 $\frac{11}{2}$ R = CH₂COOCH₃

10

When compound $\underline{9}$ was refluxed in 2M sodium hydroxide solution for 5 h, acidification of the mixture gave $\underline{11}$ in 80 % yield, mp 214-216 $^{\circ}$ C (from methanol-water). Treatment of this product with diazomethane furnished $\underline{12}$ in 93 % yield, mp 88-90 $^{\circ}$ C.

As a continuation of the synthesis, the ester $\underline{12}$ was dissolved in benzene and formylated with methyl formate in the presence of sodium hydride⁹ at 35 °C for 2 h. The resulting enol $\underline{13}$ was immediately reduced with sodium borohydride in THF at -40 °C to give the racemate $\underline{14}^{10}$ in 49 % yield.

As an alternative synthesis, compound $\underline{14}$ was also prepared by treatment of $\underline{12}$ with gaseous formaldehyde 11,12 in THF in the presence of lithium diisopropylamide for 1 h, the yield being 23 %. Elimination of the elements of water from $\underline{14}$ (heating with toluene and acetic anhydride for 50 h) gave - through the secodine-type

intermediate $\underline{15}$ - the required product, i.e. racemic 3-oxovincadifformine 13 ($\underline{5}$), yield: 48 %, mp 202-204 $^{\circ}$ C (from methanol) [lit. 14 mp 206-207 $^{\circ}$ C].

The reaction sequence $\frac{12}{12} \longrightarrow \frac{15}{12} \longrightarrow \frac{5}{2}$ was also realized by the use of Eschenmoser's salt [a.) THF/n-BuLi, -75 °C, $CH_2 = N^{(+)}(CH_3)_2 I^{(-)}$, 2 h. b.) CH_3I/CH_3OH , room temperature, 12 h. c.) NaHCO₃/H₂O, room temperature, 2 h. d.) heating in toluene for 60 h, yield 13.6 %].

When compound $\underline{12}$ was methylated with methyl iodide in dimethyl sulfoxide in the presence of sodium hydride, two products were obtained: $\underline{16}$ in 44 % yield and $\underline{17}$ in 5.5 % yield.

The carbanion from $\underline{16}$ was generated with lithium diisopropylamide in THF, and it was allowed to react with Eschenmoser's salt at -75 $^{\circ}$ C for 2 h. The resulting basic material was treated with methyl iodide in methanol at room temperature for 12 h, the mixture was then made alkaline (NaHCO₃/H₂O) and the product was refluxed in toluene for 60 h. The final product, formed via the secodine-type intermediate $\underline{18}$, was racemic 3-oxominovine ($\underline{6}$), $\underline{15}$ obtained as an oil in 16.3 % yield.

The latter compound was also prepared by the direct methylation of 3-oxovinca-difformine ($\underline{5}$) (DMSO/NaH/CH₃I, room temperature, 2 h, 68 % yield).

REFERENCES AND NOTES

- For part LII see: H. Bölcskei, E. Gács-Baitz, and Cs. Szántay, <u>Tetrahedron Lett.</u>,
 1989 7245.
- Gy. Kalaus, P. Győry, M. Kajtár-Peredy, L. Radics, L. Szabó, and Cs. Szántay, <u>Chem. Ber.</u>, 1981, <u>114</u>, 1476.
- Gy. Kalaus, M. Kiss, M. Kajtár-Peredy, J. Brlik, L. Szabó, and Cs. Szántay, <u>Heterocycles</u>, 1985, 23, 2783.
- 4. J. Y. Laronze, J. Laronze-Fontaine, J. Lévy, and J. Le Men, <u>Tetrahedron Lett.</u>, <u>1974</u>, 491.
- N. Aimi, Y. Asada, S.-I. Sakai, and J. Haginiwa, <u>Chem. Pharm. Bull.</u>, 1978, <u>26</u>, 1182.
- J. P. Kutney, R. A. Badger, J. F. Beck, H. Bosshardt, F. S. Montaugh, V. E. Ridaura-Sanz, Y. H. So, R. S. Sood, and B. R. Worth, <u>Can. J. Chem.</u>, 1979, <u>57</u>, 289.

- 7. Compound $\underline{10}$: ${}^{1}\text{H}\sim\text{nmr}$ (CDCl $_3$): δ 0.68 (3H, t, J=6.5Hz, C18-H $_3$), 0.9-2.7 (9H, m), 3.46 (1H, d, J=8.2Hz, C21-H), 3.6-4.1 (2H, m, C5-H $_2$), 4.18 (1H, s, C16-H), 6.7-7.4 (4H, m, aromatic H), 8.20 (1H, br s, N1-H) ppm. ${}^{13}\text{C}-\text{Nmr}$ (CDCl $_3$): 10.51 (C18), 23.46 (C19), 25.38 (C15), 31.31 (C14), 38.29 (C20), 39.21 (C6), 43.63 (C5), 58.91 (C16), 59.00 (C7), 71.82 (C21), 109.88 (C12), 119.00 (CN), 121.75 $^{\times}$ (C9), 123.78 $^{\times}$ (C10), 129.00 (C11), 130.82 (C8), 143.16 (C13), 167.82 (C2), 170.05 (C3) ppm. ${}^{8}\text{Ms:}$ m/z (%) 307 (23), 183 (15), 182 (100) 169 (8), 155 (5), 154 (5), 138 (29), 126 (20), 110 (14), 84 (19), 55 (8).
- 8. $^{1}\text{H-}$ and $^{13}\text{C-nmr}$ spectra were recorded on Varian XL-100-15 nmr spectrometer at 100.1 and 25.16 MHz respectively. Chemical shifts were measured relative to internal TMS, the values signed with \underline{x} may be interchanged. Mass spectra were taken on a JEOL-JMS-01 SG-2 (70eV, ion source temperature, 150 $^{\circ}\text{C}$, direct insertion) mass spectrometer. Mps. are uncorrected.
- 9. A. R. Battersby and A. K. Bhatnagar, Chem. Commun., 1970, 193.
- 10. Compound 14: ¹H-nmr (CDCl₃): 6 0.95 (3H, t, J=7.5Hz, C5'-CH₂-CH₃), 1.99 (2H, q, J=7.5Hz, C5'-CH₂-CH₃), 2-0-2.5 (4H, m, C3'-H₂+C4'-H₂), 3.00 (2H, t, J=7.2Hz, C3-CH₂, 3.5-3.8 (2H, m, N1'-CH₂), 3.72 (3H, s, COOCH₃), 4.0-4.3 (3H, m, C2-CH-CH₂-OH), 5.71 (1H, m, C6'-H), 6.95-7.65 (4H, m, aromatic H), 9.0 (1H, br s, N1-H)ppm. ¹³C-Nmr (CDCl₃): 6 12.26 (C5'-CH₂-CH₃), 23.11 (C3-CH₂), 23.94 (C4'), 26.67 (C5'-CH₂-CH₃), 30.95 (C3'), 45.54 (C2-CH), 47.73 (N1'-CH₂), 52.37 (COOCH₃), 63.95 (CH₂-OH), 110.61 (C3), 111.11 (C7), 118.26 (C4), 119.23 (C6), 121.78^x (C5'), 121.89^x (C5), 123.60 (C6'), 128.00 (C3a), 129.64 (C2), 135.77 (C7a), 169.17 (C2'), 172.86 (C0OCH₃) ppm. ⁸ Ms: m/z (%) 370 (18), 352 (32), 246 (20), 245 (100), 232 (52), 227 (66), 215 (87), 214 (37), 202 (31), 170 (65), 154 (19), 144 (19), 138 (20), 110 (21), 84 (4).
- 11. P. A. Grieco and K. Hiroi, Chem. Commun., 1972, 1317.
- 12. P. A. Grieco and K. Hiroi, Tetrahedron Lett., 1973, 1831.
- 13. Compound $\underline{5}$: ${}^{1}\text{H-nmr}$ (CDCl $_{3}$): δ 0.72 (3H, t, J=6.8 Hz, Gl8-H $_{3}$), 1.00 (2H, q, J=6.8 Ez, C19-H $_{2}$), 1.2-2.5 (6H, m, C6-H $_{2}$ +Cl4-H $_{2}$ +Cl5-H $_{2}$), 1.97 (1H, d, J $_{\text{gem}}$ =15.5 Hz, C17-H $_{A}$), 2.65 (1H, dd, J $_{\text{long range}}$ = 1.5 Hz, C17-H $_{B}$), 3.37 (1H, dd, J $_{\text{gem}}$ = 11.8Hz, J $_{\text{vic}}$ =6.3Hz, C5-H $_{A}$). 3.50 (1H, d, J=1.6Hz, C21-H), 3.78 (3H, s, C00CH $_{3}$), 4.17 (1H, ddd, J $_{\text{gem}}$ =11.8Hz, J $_{\text{vic}}$ =7.1 and 1.0Hz, C5-H $_{B}$), 6.7-7.35 (4H, m, aromatic H), 9.0 (1H, br s, N1-H)ppm. $^{13}\text{C-Nmr}$ (CDCl $_{3}$): δ 7.50 (C18), 27.98 (C19), 28.76 (C17), 30.07 (C15), 31.14 (C14), 39.45 (C20), 39.98 (C6), 43.08

- (C5), 51.06 (COOCH₃), 56.70 (C7), 68.17 (C21), 91.05 (C16), 109.73 (C12), 121.10^{x} (C9), 121.62^{x} (C10), 128.63 (C11), 135.82 (C8), 143.09 (C13), 163.90 (C2), 168.27 (COOCH₃), 171.51 (C3)_{ppm.}⁸ Ms: m/z (%) 352 (50), 227 (100), 214 (31), 195 (32), 168 (11), 154 (13), 138 (6).
- 14. M. E. Kuehne, T. H. Matsko, J. C. Bohnert, L. Motyka, and D. Oliver-Smith, J. Org. Chem., 1981, 46, 2002.
- 15. Compound <u>6</u>: 1 H-nmr (CDCl₃): & 0.65-1.15 (5H, m, CH₂CH₃), 1.2-2.5 (6H, m, C6-H₂+C14-H₂+C15-H₂), 2.11 (1H, d, 1 J_{gem}=16.0Hz, C17-H_A), 2.78 (1H, dd, 1 J_{gem}=16.0Hz, 1 J_{long range}=2.2Hz, C17-H_B), 3.35 (3H, s, N1-CH₃), 3.38 (1H, dd, 1 J_{gem}=11.5Hz, 1 J_{vic}=6.6Hz, C5-H_A), 3.51 (1H, d, 1 J=2Hz, C21-H), 3.76 (3H, s, C00CH₃), 4.18 (1H, ddd, 1 J_{gem}=11.5Hz, 1 J_{vic}=7.5 and 1Hz, C5-H_B), 6.8-7.4 (4H, m, aromatic H) ppm. 13 C-Nmr (CDCl₃): & 7.38 (C18), 27.88 (C19), 29.91 (C15), 31.04 (C14), 32.58 (C17), 36.10 (N1-CH₃), 38.86 (C20), 41.15 (C6), 43.40 (C5), 51.05 (C00CH₃), 57.33 (C7), 70.24 (C21), 92.52 (C16), 108.80 (C12), 121.06^x (C9), 121.46^x (C10), 128.55 (C11), 136.51 (C8), 146.82 (C13), 163.12 (C2), 167.01 (C00CH₃), 171.38 (C3) ppm. Ms: m/z (%) 366 (35), 335 (5), 241 (100), 228 (39), 182 (14), 168 (12).

Received, 5th March, 1990