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Abstract - Benzoxolane prostacyclin analogue ( (?)-I)  was synthesized with 

key steps involving regio- and stereocontrolled carbon-carbon bond formation 

using allylic phosphate (17) and stabilized copper reagent derived from 15, 

followed by intramolecular selenoetherification leading to cyclopentanobenz- 

oxolane (19). 

The preceding paper reported the synthesis of benzodioxane prostacyclin analogue ((+)-3),1 which 

showed a different profile in terms of biological activities compared with i t s  isosters, benzopyran- 4and 

benzindene prostacyclin mimic 5.2 This suggested that transformation of the central ring might be an 

attractive method for modulating biological activities, and we carried out another study along this line. 

Here we report the synthesis of structurally more rigid benzoxolane prostacyclin analogue ((?:)-I), an 

isoster of benzcarbacyclin derivative (2).3 

Our synthetic plan shown in Scheme 1, involves the preparation of 4-phenyl-2-cyclopenten-1-01 derivative 

(a), and i t s  conversion into cyclopentanobenzoxolane (9) by selenoetherification. We assumed that 8 could 

Scheme 1 



be prepared favorably by a regio- and stereocontrolled carbon-carbon bond formation between o-metal- 

lated phenyl ether (6) and allylic ester (71, while introduction o f  the propenyl group t o  C12 (PG numbering) 

o f  9, and subsequent extension of a- and o-side chains were expected t o  afford target compound (?:)-I 

We first concentrated on model study of carbon-carbon bond formation using organocopper and allylic 

ester4 for obtaining 8 (Table 1). Homocuprate (13a) was found t o  react w i th  allylic acetate (10a) 

preferentially in an S N ~  manner t o  give the desired product (11) in 49% yield based on  10a, but  the yield 

based on  13a was only 24%. Therefore we examined various phenylcopper reagents and allylic esters, in 

order t o  increase the yield and minimize reagent loss. Trials wi th phenylcopper itself (Entry 2) or its 

BF3.0Et2 complex (Entry 3) d id no t  work, bu t  combinations o f  stabilized phenylcoppers5 and active allylic 

esters (Entries 6-12) led t o  greatly improved results, although a small amount o f  S N ~ '  product (12) (Entries 

8, 11) was sometimes obtained. The best result was achieved by the combination of allylic phosphate 

(10e)6 and PhCu.2.5P(NMe2)3 l 3 f  t o  give 11 in 73% and 61% yield based on  10e and 13f, respectively, w i th  

excellent S N ~ / S N ~ '  selectivity (Entry 12). 

Table 1. Reaction of organocopper reagents with allylic esters 

9" 
Entry Subrt. Reag. Temp. Timed Reagl  Yieldbl 11112d 

Copper 10 13 (IC) (h) Subrt (%) 

$ 5 0 + 0 1 a a -408 0 1 5  2 49(12) > 2 0  1 
..Ph 2 a b -70 r 2 0  1 2 O(0)  -- 

OMOM OMOM OMOM 3 a c -70 r -20 1 2 O(0)  -- 

10a-e 11 12 4 a d 7 0 r  ri o n d J  2 trace ~- 
5 b d -20,- 0 on. 2 39(20) >20:  I 

R5 6 c d - 7 0 r - 1 0  3 2 67 (34) >20 : 1 
a: MeCO 
b: 2,4~C12.PhC0 COpPe'reagentr 13 7 d d - 2 0 r 1 0  3 2 67 (34) >20 : 1 

c : C6FIC0 a: Ph2CuLi 8 e d - 2 0 r  -10 3 2 87 (44) 7 :  1 
d :  tFiCO b: Phtu 9 d d -20 r  I 0  a n .  1.2 34(28) >20:  1 
e :  (Et0)2P0 c :  PhCu-BF3.0Et2 (1 : 2) 10 d e -20 r  -10 2 1.2 59(49) >20:  1 

d: PhCu-P(n-Bd3 ( I  : 1.2) li 2 0 r  
e :  Phcu-P(n-B~)~ (1 : 2.4) 

1.2 69(58) 1 3 : l  

f : P ~ C U - P ( N M ~ ~ ) ~  (1 : 2.5) l2 -20 1.5 1.2 73(61) >20 :1  
g: Ph(CN)CuLi 13 d g 1 5 r i i  0." 3 47(16) 2:3 

- 

d A f t e r  reaching the final temperature. 
blYieldr in parenthererare bared on phenyl group(%) i n  reagents 
4 The ratiowardetermined by 1H-nmr analyrir. 
dJOvernight 

Having reached a practical solution for the carbon-carbon bond formation, we embarked on  the synthesis 

o f  (+)-1. wi th the results given in Scheme 2. Beginning wi th methyl 4-hydroxyphenylacetate (14), four- 

step conversion, namely, bromination, protection o f  the hydroxy group as THP ether, reduction of the 

ester t o  the alcohol, and its protection w i th  the MEM group, afforded o-bromophenyl ether (IS), one o f  

the components o f  the key intermediate (18). The other component, the allylic phosphate (17), was 

prepared from the known allylicsulfide (16) via silylation, oxidation t o  thesulfoxide, rearrangementto the 

allylic alcohol, and esterification. We chose 17 bearing a bulkier t-butyldiphenylsilyloxy group a t  6-  

position instead o f  10e, which we expected would induce further improvement i n  S N ~ / S N ~ '  ratio. As 

expected, the reaction between 17 and the hexamethyl phosphorous triamide-stabilized organocopper 
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a) NBS (1 eqJ1DMF (66%). b) DHP, PPTSlCH2C12. c) LiAIHdEt20. d) MEMCI, i-PrzNEffCH2C12 (b, c, d 
88%). e) t-BuPh2SiCI. DMAPIDMF. f) mCPBA (1 eq.)/CH2C12. 70 °C  g) Ph3P (1.47 eq.)lMeOH-PhMe. 
65T, overnight (e, f, g 88%). h) n-BuLi (1 eq.)lHMPA-THF. -20°C; (Et0)zPOCI (1.5 eq.) (63%). i) i. 
15 (2 eq.1, n-BuLi (2 eq.)lTHF, -70°C. 15 min; ii. CuBr5Mez (2 eq.). (Me2N)jP (5 eq.)lTHF, -70"C, add. 
over 20 min, additional 15 min, and then -30°C. 40 min; iii. 17 (1 eq.)lTHF, -20 - -30mC, add. over 40 
min, and then -20°C. 50 min (86% based on 17). j) PPTSIMeOH (72%). k) PhSeBr (1.3 eq.), 
propylene oxide (5 eq.)lCH2C12, 0°C. and then room temperature, overnight (95%). 1) n -  
Bu35nCH2CH = CHz (3 eq.)lPhH, hv, 5 h (60%). m) TMSCl(4eq.). Nal(4 eq.)lMeCN, add. in equal two  
portions at 0 and 20 min; -15"C, total 50 min, aq. NH& quench (85%). n) i. (COCI)2 (2 eq.). DMSO 
(4 eq.)ICHzC12, -78°C; ii. 21 (1 eq.); iii. Et3N (4 eq.), -78"Cr-20°C. o) NaC102 (5 eq), Me2C =CHMe 
(28 eq.). NaH2POv2H20 (3.75 eq.)/t-BuOH-HzO, room temperature, 10 min. p) CH2N21Et20 (n, o, p 
73%). q) PhSeCl (1.1 eq.)/CCI4. 0°C. 10 min; Py, 30% H202, 0°C. and then room temperature, 1 h 
(77%). r) CsOAc(3 eq.). 18-Crown-6 (1 eq.)/PhMe. reflux, 19 h (86%). s) 0s04(0.1 eq.). Me3N0 (2 
eq.)lMeCOMe-THF-H20, 4 h, room temperature. t) Na104 (2 eq.)/DME-H20, room temperature, 
overnight (s, t 61%). u) ( M ~ O ) ~ P O C H ~ C O C ~ H ~ I ~  (1.5 eq.), NaH (1.3 eq.)lTHF, room temperature, 20 
min; 23. room temperature. 40 min (95%). v) CeCI3.7H20 (1 eq.), NaBH4 (1 eq.)mHF-MeOH. 0°C. 5 
min (24 61%. 25 36%). w)  n-8u4NFlTHF (67%). x) aq. NaOH-MeOH (72%). 

Scheme 2 

prepared from 15 wentsatisfactorily and exclusively gave 18 in 86% yield based on  17 (i. 15 2 eq.. n-BuLi 2 

eq.TTHF, -70°C; ii. CuBr.SMe2 2 eq., (MezNhP 5 eq.lTHF, -70°C and then -30°C; iii. 17 1 eq.KHF, add, a t  -20 - 

-30°C and then -20°C). 

In the next key step, the  phenol obtained by deprotection of the THP group in 18 was subjected to seleno- 

etherification.7 We found that  a combination o f  phenylselenenyl bromide and propylene oxides worked 



nicely t o  give the desired cyclopentanobenroxolane (19) in excellent yield (95%). The propenyl group was 

introduced by trapping the radical formed from 19 wi th allyltin.1 which was followed by deprotection o f  

the MEM group t o  afford the alcohol (21). The latter process was problematic a t  the beginn~ng. Thus 

treatment of 20 w i th  ZnBr21CH2C129 led t o  formation of tetracyclic compound (26.10 69%) wi th only a small 

amount of 21 (12%), while another procedure, namely, TMSCI, NallMeCN treatment and subsequent 

quenching w i th  aq. NaCl gave the dimeric compound (27) as the major product (72%). Eventually, we 

were able t o  solve the problem by replacing the  quenching medium of aq. NaCl wi th weakly acidic aq. 

NH4CI t o  obtain 21 in good yield (85%). 

Further conversion o f  alcohol (21) t o  ester (22) by stepwise oxidation t o  the acid, and its esterification 

completed the  formation o f  the a-side chain, leaving construction o f  the w-side chain as the final task. The 

propenyl group in 22 was transformed into a formyl group t o  obtain the versatile intermediate (23) by 

sequential procedures including addition of phenylselenenyl chloride and oxidative elimination t o  the 

allylic chloride in one pot, its conversion into the allylic acetate, and cleavage of the  double bond. 

Extension of the o-side chain was performed by the Horner-Emmons reaction t o  obtain the (E)-enone, 

which was reduced t o  a mixture o f  allylic alcohols (24.15a-OH, less polar. 61%) and (25, 15pOH, more 

polar, 36%).11 Finally, deprotection via the methyl ester furnished benroxolane prostacyclin analogue 

(( ?)-l).lZ 

Compound (+-)-I was found t o  be far less active in inhibiting platelet aggregation (ICso = 189 pM. ADP, 

rabbit PRP) than benzodioxane prostacyclin analogue ((?)-3a) and non-cytoprotective. 
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