PHENOLIC COMPOUNDS FROM SALIX SACHALINENSIS Mizuo Mizuno*, Masaya Kato, Nobue Hosoi, Munekazu Iinuma, and Toshiyuki Tanaka Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan Arika Kimura, Hiroyoshi Ohashi, Hideki Sakai, and Tadashi Kajita Department of Botany, Faculty of Science, Tohoku University, Aoba, Aramaki, Sendai 980, Japan <u>Abstract</u>—Two new glucosides of phenolic compounds, sachalisides 1 (1) and 2 (2), were isolated from the bark of <u>Salix sachalinensis</u> and their structures were established by the spectroscopic analysis. The aglycone moiety of sachaliside 2 was a new type skeleton consisting of $C_6-C_3-C_6-C_3-C_6$ units (flavan-3-ol substituted with phenylpropanoid on the A-ring). In the continuation of our chemotaxonomic studies on Salicaceous plants, 1,2 we have revealed the intraspecific chemical variations in <u>Salix sachalinensis</u> on the basis of the chemical constituents in their leaves. For the advanced characterization of two chemical races in <u>S. sachalinensis</u>, phenolic compounds in the bark and the woods were investigated. Nine compounds including two novel phenolics were isolated and characterized. Plant materials⁴ were collected in November, 1987 at Takane-mura, Ohno-gun, Gifuprefecture, Japan. From a methanolic extract of the bark, two new compounds (1 and 2) were isolated together with quercetin, myricetin, taxifolin, (+)-catechin and (+)-gallocatechin. Compound (1) was also obtained from a methanolic extract of the wood besides 2,6-dimethoxy-p-hydroquinone-1-O- β -D-glucopyranoside.⁵ Compound (1) was obtained as colorless needles, mp 152-152.5 °C from acetone. In the 1 H nmr spectrum, an $A_{2}B_{2}$ system at 7.25 ppm and 6.71 ppm(\underline{J} = 8.8 Hz) and an ABXY system at 6.53(d, \underline{J} = 15.8 Hz), 6.11(dt, \underline{J} = 15.8 and 5.5 Hz), 4.39 and 4.15 ppm (each dd, \underline{J} = 5.5 and 12.5 Hz) indicated the presence of a p-coumaryl alcohol moiety. The ^{13}C nmr 6 not only supported the presence of the moiety, but also showed the presence of a $_{\beta^-D^-}$ -glucopyranosyl moiety. The position of the glucosyl moiety on $_{\beta^-D^-}$ -coumaryl alcohol was determined to be at $_{\gamma^-D^-}$, because a singlet (9.49 ppm) of phenolic hydroxyl group was observed in the $_{\gamma^-D^-}$ - $_{\beta^-D^-}$ -glucopyranoside and named sachaliside 1. Compound (2) was obtained as colorless needles, mp 202-203 °C from methanol. Negative ion fab-ms spectrum of 2 showed [M-H] at $\underline{m}/\underline{z}$ 583 and [M-glucose] at $\underline{m}/\underline{z}$ 421, respectively. Other spectral data (Tables 1 and 2) showed 2 to be one of flavan-3-ol derivatives. The configurations of C-2 and C-3 were characterized as 2R and 3S by the cd spectrum 7 and the nmr data. Therefore, 2 was concluded to be a derivative of (+)-catechin. In the 1H nmr spectrum, a singlet at 6.22 ppm indicated that either C-6 or C-8 in the flavan-3-ol skeleton was substituted. Signals appearing as an ABXY at 6.33, 6.14 and 3.55-3.42 ppm were assigned to a trans-propenyl group, which was confirmed by ¹H-¹³C COSY spectrum. An A_2B_2 system at 7.13 and 6.69 ppm as doublets in the 1H nmr spectrum, and signals at 115.3, 126.9, 128.8 and 156.3 ppm in the 13 C nmr spectrum were attributable to a para-substituted phenol moiety. The above data sug- Table 1. ¹H- ¹H connectives from COSY and | long range COSY spectrum. | | | | | | | | |---------------------------|-------------------------------|--------------|--------------------|--|--|--|--| | | emical shift(δ
] value(Hz) | | to H
range COSY | | | | | | H-2 | 4.56 d
(7.3) | H-3 | H-2,6 | | | | | | H-3 | 3.94-
3.86 m | $H-2, H_2-4$ | | | | | | | H-4 | 2.78 dd
(16.3,5.6) | H-3,H-4 ax | | | | | | | H-4ax | 2.52 dd
(16.3,7.7) | H-3,H-4 | | | | | | | H-8 | 6.22 s | | H-1"' | | | | | | H-2 * | 6.76 d
(1.3) | н-6' | H-2 | | | | | | H-5' | 6.73 d
(8.1) | H-6' | | | | | | | H-6' | 6.63 dd
(8.1,1.3) | H-2',H-5' | H-2 | | | | | | H-2",6" | 7.13 d
(8.6) | н-3",5" | H-7" | | | | | | н-3",5" | 6.69 d
(8.6) | н-2",6" | | | | | | | н-7" | 6.33 d
(15.8) | н-8" | H-2",6"
H-9" | | | | | | H-8" | 6.14 dt
(15.8,6.8) | н-7",н-9" | | | | | | | H-9" | 3.55-
3.42 m | H-8" | H-7" | | | | | | H-1"' | 4.74 br d
(7.7) | | н-8 | | | | | These spectra were taken in DMSO- \underline{d}_6 . gested the presence of a 1-para-hydroxyphenyl-trans-propenyl moiety in the structure of 2. Six carbon signals at 101.4 and 77.0-60.8 ppm showed the presence of a glucopyranosyl group. In the ^1H nmr spectrum, a broad doublet (\underline{J} = 7.7 Hz) assignable to β -anomeric proton was observed at 4.74 ppm. In the ^1H - ^1H long range COSY and NOESY spectrum, a cross peak was observed between the anomeric proton and | Table 2. | ¹³ C nmr | and | 1H-13C | connectives. | (measured | in DMSO- <u>d</u> 6) | |----------|---------------------|-----|--------|--------------|-----------|----------------------| |----------|---------------------|-----|--------|--------------|-----------|----------------------| | Carbon
No. | Chemical $shift(\delta)$ | Multip
(INEPT | | Connect.
to H | Carbon
No. | Chemical shift(δ) | Multiplicity
(INEPT 3/4J) | Connect.
to H | |---------------|--------------------------|------------------|----------|----------------------|---------------|----------------------------|------------------------------|------------------| | 2 | 80.8 | СН | | | 1" | 128.8 | -C- | н-3",5" | | 3 | 66.2 | CH | | | 2",6" | 126.9 | CH | • | | 4 | 28.3 | CH ₂ | | | 3",5" | 115.3 | CH | H-2",6" | | 5 | 152.9 | -c-2 | H-9 | Э",Н-8 | 4 " | 156.3 | -c- | н-2",6" | | 6 | 108.9 | -c- | | н-8 | 7" | 128.7 | CH | H-2",6" | | 7 | 154.9 | -c- | H-8.H-9 |)",H-1"' | 8" | 126.2 | CH | • | | 8 | 95.0 | CH | | • | 9" | 26.3 | CH ₂ | | | 9 | 153.1 | -c- | H-8.H- | -2,H ₂ -4 | 1"' | 101.4 | CH ² | | | 10 | 102.9 | -c- | | -4.H ² 8 | 2"' | 73.5 | СН | | | 1' | 130.4 | -c- | | • | 3"' | 77.0 | CH | | | 2' | 114.4 | CH | | | 4"' | 69.8 | CH | | | 3'
4' | 144.9 | -c- | H-2',H-5 | 5',H-6' | 5"'
6"' | 76.8
60.8 | СН
СН ₂ | | | 5' | 115.1 | CH | | | - | | 2 | | | 6' | 118.4 | CH | | | | | | | the A ring proton. These results suggested that the glucose was linked with a hydroxyl group being adjacent to the A ring proton. Consequentry, three possible partial structures (A, B and C) could be considered as follows. The $^{1}\text{H-}^{13}\text{C}$ long range COSY spectrum ($\underline{\text{J}}_{\text{CH}}$ = 8 Hz) showed cross peaks of H-2, H₂-4 and H-8 with C-9; H-8, H₂-9" and H-1" with C-7; H₂-9" with C-5 (in Scheme 1); and H₂-4 with C-10. These data indicated that the glucosyl moiety was attached to the hydroxyl group at C-7 and the 1-para-hydroxyphenyl-trans-propenyl moiety was attached to C-6 such as **A**. On the basis of above data, **2** was concluded to be 6-(1-para-hydroxyphenyl-trans-propenyl)catechin-7-0- β -D-glucopyranoside and named sachaliside 2. To the best of our knowledge, natural products with a C_6 - C_3 - C_6 - C_3 - C_6 skeleton are very rare. The C-C bond sequence between a C_6 - C_3 moiety (phenylpropene) and a C_6 - C_3 - C_6 moiety (catechin) is different from that of the cognate (3) in Cinchona⁸. Further investigation on the chemotaxonomy of the genus Salix is now in progress. ## REFERENCES AND NOTES - 1. M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, and H. Sakai, Phytochemistry, 1987, 26, 2418. - M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, and H. Sakai, Asian J. Plant Sci., 1989, 1(2), 1. - M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, H. Sakai, and T. Kajita, <u>Bot. Mag. Tokyo</u>, 1989, 102, 403. - 4. Plant materials used in this study were the individuals belonging to the flavonoid race that contains considerable amounts of myricetin and dihydromyricetin in their leaves. - 5. H. Otsuka, M. Takeuchi, S. Inoshiri, T. Sato, and K. Yamasaki, Phytochemistry, 1989, 28, 883. - 6. 13 C nmr(DMSO-d₆) $_{\delta}$: 61.1(C-6'), 68.8(C- $_{\Upsilon}$), 70.1(C-4'), 73.4(C-2'), 76.7(C-5'), 76.9(C-3'), 101.9(C-1'), 115.3(C-3,5), 122.6(C- $_{\alpha}$), 127.5(C- $_{\beta}$), 127.6(C-2,6), 131.7(C-1), 157.1(C-4). - 7. Cd spectrum of compound 2 (MeOH) $\lambda_{\text{ext}}(\text{nm})$: 223($\Delta\epsilon$ -3.0), 245(+2.3), 273 (-0.76); (+)-catechin (MeOH) $\lambda_{\text{ext}}(\text{nm})$: 232(-0.88), 245(+0.088), 277(-0.75). - 8. G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1982, 30, 4268. Received, 24th April, 1990