PHENOLIC COMPOUNDS FROM SALIX SACHALINENSIS

Mizuo Mizuno*, Masaya Kato, Nobue Hosoi, Munekazu Iinuma, and Toshiyuki Tanaka

Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan

Arika Kimura, Hiroyoshi Ohashi, Hideki Sakai, and Tadashi Kajita Department of Botany, Faculty of Science, Tohoku University, Aoba, Aramaki, Sendai 980, Japan

<u>Abstract</u>—Two new glucosides of phenolic compounds, sachalisides 1 (1) and 2 (2), were isolated from the bark of <u>Salix sachalinensis</u> and their structures were established by the spectroscopic analysis. The aglycone moiety of sachaliside 2 was a new type skeleton consisting of $C_6-C_3-C_6-C_3-C_6$ units (flavan-3-ol substituted with phenylpropanoid on the A-ring).

In the continuation of our chemotaxonomic studies on Salicaceous plants, 1,2 we have revealed the intraspecific chemical variations in <u>Salix sachalinensis</u> on the basis of the chemical constituents in their leaves. For the advanced characterization of two chemical races in <u>S. sachalinensis</u>, phenolic compounds in the bark and the woods were investigated. Nine compounds including two novel phenolics were isolated and characterized.

Plant materials⁴ were collected in November, 1987 at Takane-mura, Ohno-gun, Gifuprefecture, Japan. From a methanolic extract of the bark, two new compounds (1 and 2) were isolated together with quercetin, myricetin, taxifolin, (+)-catechin and (+)-gallocatechin. Compound (1) was also obtained from a methanolic extract of the wood besides 2,6-dimethoxy-p-hydroquinone-1-O- β -D-glucopyranoside.⁵

Compound (1) was obtained as colorless needles, mp 152-152.5 °C from acetone. In the 1 H nmr spectrum, an $A_{2}B_{2}$ system at 7.25 ppm and 6.71 ppm(\underline{J} = 8.8 Hz) and an ABXY system at 6.53(d, \underline{J} = 15.8 Hz), 6.11(dt, \underline{J} = 15.8 and 5.5 Hz), 4.39 and 4.15 ppm (each dd, \underline{J} = 5.5 and 12.5 Hz) indicated the presence of a p-coumaryl alcohol

moiety. The ^{13}C nmr 6 not only supported the presence of the moiety, but also showed the presence of a $_{\beta^-D^-}$ -glucopyranosyl moiety. The position of the glucosyl moiety on $_{\beta^-D^-}$ -coumaryl alcohol was determined to be at $_{\gamma^-D^-}$, because a singlet (9.49 ppm) of phenolic hydroxyl group was observed in the $_{\gamma^-D^-}$ - $_{\beta^-D^-}$ -glucopyranoside and named sachaliside 1.

Compound (2) was obtained as colorless needles, mp 202-203 °C from methanol. Negative ion fab-ms spectrum of 2 showed [M-H] at $\underline{m}/\underline{z}$ 583 and [M-glucose] at $\underline{m}/\underline{z}$

421, respectively. Other spectral data (Tables 1 and 2) showed 2 to be one of flavan-3-ol derivatives. The configurations of C-2 and C-3 were characterized as 2R and 3S by the cd spectrum 7 and the nmr data. Therefore, 2 was concluded to be a derivative of (+)-catechin. In the 1H nmr spectrum, a singlet at 6.22 ppm indicated that either C-6 or C-8 in the flavan-3-ol skeleton was substituted. Signals appearing as an ABXY at 6.33, 6.14 and 3.55-3.42 ppm were assigned to a trans-propenyl group, which was confirmed by ¹H-¹³C COSY spectrum. An A_2B_2 system at 7.13 and 6.69 ppm as doublets in the 1H nmr spectrum, and signals at 115.3, 126.9, 128.8 and 156.3 ppm in the 13 C nmr spectrum were attributable to a para-substituted phenol moiety. The above data sug-

Table 1. ¹H- ¹H connectives from COSY and

long range COSY spectrum.							
	emical shift(δ] value(Hz)		to H range COSY				
H-2	4.56 d (7.3)	H-3	H-2,6				
H-3	3.94- 3.86 m	$H-2, H_2-4$					
H-4	2.78 dd (16.3,5.6)	H-3,H-4 ax					
H-4ax	2.52 dd (16.3,7.7)	H-3,H-4					
H-8	6.22 s		H-1"'				
H-2 *	6.76 d (1.3)	н-6'	H-2				
H-5'	6.73 d (8.1)	H-6'					
H-6'	6.63 dd (8.1,1.3)	H-2',H-5'	H-2				
H-2",6"	7.13 d (8.6)	н-3",5"	H-7"				
н-3",5"	6.69 d (8.6)	н-2",6"					
н-7"	6.33 d (15.8)	н-8"	H-2",6" H-9"				
H-8"	6.14 dt (15.8,6.8)	н-7",н-9"					
H-9"	3.55- 3.42 m	H-8"	H-7"				
H-1"'	4.74 br d (7.7)		н-8				

These spectra were taken in DMSO- \underline{d}_6 .

gested the presence of a 1-para-hydroxyphenyl-trans-propenyl moiety in the structure of 2. Six carbon signals at 101.4 and 77.0-60.8 ppm showed the presence of a glucopyranosyl group. In the ^1H nmr spectrum, a broad doublet (\underline{J} = 7.7 Hz) assignable to β -anomeric proton was observed at 4.74 ppm. In the ^1H - ^1H long range COSY and NOESY spectrum, a cross peak was observed between the anomeric proton and

Table 2.	¹³ C nmr	and	1H-13C	connectives.	(measured	in DMSO- <u>d</u> 6)
----------	---------------------	-----	--------	--------------	-----------	----------------------

Carbon No.	Chemical $shift(\delta)$	Multip (INEPT		Connect. to H	Carbon No.	Chemical shift(δ)	Multiplicity (INEPT 3/4J)	Connect. to H
2	80.8	СН			1"	128.8	-C-	н-3",5"
3	66.2	CH			2",6"	126.9	CH	•
4	28.3	CH ₂			3",5"	115.3	CH	H-2",6"
5	152.9	-c-2	H-9	Э",Н-8	4 "	156.3	-c-	н-2",6"
6	108.9	-c-		н-8	7"	128.7	CH	H-2",6"
7	154.9	-c-	H-8.H-9)",H-1"'	8"	126.2	CH	•
8	95.0	CH		•	9"	26.3	CH ₂	
9	153.1	-c-	H-8.H-	-2,H ₂ -4	1"'	101.4	CH ²	
10	102.9	-c-		-4.H ² 8	2"'	73.5	СН	
1'	130.4	-c-		•	3"'	77.0	CH	
2'	114.4	CH			4"'	69.8	CH	
3' 4'	144.9	-c-	H-2',H-5	5',H-6'	5"' 6"'	76.8 60.8	СН СН ₂	
5'	115.1	CH			-		2	
6'	118.4	CH						

the A ring proton. These results suggested that the glucose was linked with a hydroxyl group being adjacent to the A ring proton. Consequentry, three possible partial structures (A, B and C) could be considered as follows.

The $^{1}\text{H-}^{13}\text{C}$ long range COSY spectrum ($\underline{\text{J}}_{\text{CH}}$ = 8 Hz) showed cross peaks of H-2, H₂-4

and H-8 with C-9; H-8, H₂-9" and H-1" with C-7; H₂-9" with C-5 (in Scheme 1); and H₂-4 with C-10. These data indicated that the glucosyl moiety was attached to the hydroxyl group at C-7 and the 1-para-hydroxyphenyl-trans-propenyl moiety was attached to C-6 such as **A**. On the basis of above data, **2** was concluded to be 6-(1-para-hydroxyphenyl-trans-propenyl)catechin-7-0- β -D-glucopyranoside and named sachaliside 2.

To the best of our knowledge, natural products with a C_6 - C_3 - C_6 - C_3 - C_6 skeleton are very rare. The C-C bond sequence between a C_6 - C_3 moiety (phenylpropene) and a C_6 - C_3 - C_6 moiety (catechin) is different from that of the cognate (3) in Cinchona⁸.

Further investigation on the chemotaxonomy of the genus Salix is now in progress.

REFERENCES AND NOTES

- 1. M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, and H. Sakai, Phytochemistry, 1987, 26, 2418.
- M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, and H. Sakai,
 Asian J. Plant Sci., 1989, 1(2), 1.
- M. Mizuno, M. Kato, M. Iinuma, T. Tanaka, A. Kimura, H. Ohashi, H. Sakai, and T. Kajita, <u>Bot. Mag. Tokyo</u>, 1989, 102, 403.
- 4. Plant materials used in this study were the individuals belonging to the flavonoid race that contains considerable amounts of myricetin and dihydromyricetin in their leaves.
- 5. H. Otsuka, M. Takeuchi, S. Inoshiri, T. Sato, and K. Yamasaki, Phytochemistry, 1989, 28, 883.
- 6. 13 C nmr(DMSO-d₆) $_{\delta}$: 61.1(C-6'), 68.8(C- $_{\Upsilon}$), 70.1(C-4'), 73.4(C-2'), 76.7(C-5'), 76.9(C-3'), 101.9(C-1'), 115.3(C-3,5), 122.6(C- $_{\alpha}$), 127.5(C- $_{\beta}$), 127.6(C-2,6), 131.7(C-1), 157.1(C-4).
- 7. Cd spectrum of compound 2 (MeOH) $\lambda_{\text{ext}}(\text{nm})$: 223($\Delta\epsilon$ -3.0), 245(+2.3), 273 (-0.76); (+)-catechin (MeOH) $\lambda_{\text{ext}}(\text{nm})$: 232(-0.88), 245(+0.088), 277(-0.75).
- 8. G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 1982, 30, 4268.

Received, 24th April, 1990