FURTHER NORDITERPENOID ALKALOIDS FROM DELPHINIUM NUTTALLIANUM

Yili Bai and Michael Benn*

Department of Chemistry, The University, Calgary, Alberta, Canada T2N 1N4

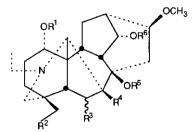
Walter Majak

Agriculture Canada Research Station, 3015 Ord Rd., Kamloops, B.C., Canada V2B 8A9

<u>Abstract</u> - A study of the minor bases of D. *nuttallianum* resulted in the isolation and identification of eight known and five new diterpenoid alkaloids.

In the course of an investigation of the toxic properties of *D. nuttallianum* Pritz., a cow-poisoning plant of the rangeland of Interior British Columbia, we identified sixteen known and four new norditerpenoid alkaloids (first designated A-D),¹ as well as one new diterpenoid base.² We now report the outcome of further fractionation of the minor bases of this plant, by vscc on basic alumina³ followed by repeated ptle on silica gel 60, which resulted in the separation of another thirteen components. Individually these were obtained as amorphous solids in very small amounts (< 5 mg, 0.56% of the total plant alkaloids) but the application of modern spectrometric procedures, including in some cases proton-detected (inverse) heteronuclear proton-carbon nmr chemical shift correlations according to Bax and Subramanian,⁴ allowed us to deduce their structures. Eight were thus identified⁵ as alkaloids which had been described before: N-acetyldelectine, bicolorine, 2-dehydrohetisine, delectinine, hetisine,⁷ hetisine-11,13-di-O-acetate,⁷ lycoctonine and takosamine. The other five alkaloids (*E* - *I*) appear to be new. The evidence which led us to their structures may be summarised as follows.

Alkaloid *E* was suspected to have the composition $C_{24}H_{39}NO_7$ on the basis of its eims^{8a} (apparent molecular ion at m/z 453) and ¹³C-nmr spectrum^{8b} (resonances corresponding to 24 carbon atoms). Its ¹H nmr spectrum^{8c} contained signals which indicated the presence of an N-ethyl (δ 1.11, 3H, t, J=7.2 Hz for $CH_3CH_2N\leq$) and three methoxyl groups (δ 3.37, 3.41, and 3.51, each 3H, s). This suggested that *E* had a C_{19} -norditerpenoid skeleton of the aconitine or lycoctonine kind. A decision in favour of the latter followed from the assignment of an absorption (δ 4.40, 1H, s) to a 6α -H adjacent to a hydroxylated C-7. The presence of a 14 α -hydroxyl group was inferred from another low-field carbinyl resonance (δ 4.04, t, J=4.5 Hz). Since there was no signal corresponding to a tertiary C-methyl group we knew that C18 was also oxygenated. The distribution of the three methoxyl groups at C8, 16 and 18 followed from an examination of the ¹³C-nmr spectrum of *E*: there being resonances characteristic of the tertiary methoxyl (δ 52.0), β -methoxylated C16 (δ 82.0), and C18 (methoxy)methylene (δ 78.9). The structure (2) thus deduced for *E* corresponded to deacetylated 6-*epi*-pubescenine (our original alkaloid-A) (*I*) and the ¹³C-nmr spectra of the two alkaloids were very


Carbon	11	2	31	4	5 ⁹	6	7	8	9	10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	72.6 26.9 29.2 37.2 44.2 81.1 90.1 84.7 41.5 49.3 49.6 27.2 36.5 75.4 29.4 82.2 66.5 78.9	72.6 27.1 28.5 37.2 45.0 80.7 90.0 84.3 43.0 49.3 49.1 27.3 39.6 74.7 29.1 82.0 66.8 78.9	72.4 26.9 30.0 37.7 44.4 82.5 50.9 75.4 46.2 45.2 45.2 48.5 29.6 39.8 76.1 40.7 81.8 65.3 67.4	72.4 26.7 29.9 37.6 43.5 82.9 51.1 75.1 44.7 ^b 44.0 ^b 48.5 29.6 37.9 76.7 40.2 81.7 65.0 67.3	86.1 26.0 35.2 39.2 48.8 82.5 52.8 72.6 50.3 45.7 ^a 50.4 28.6 38.4 ^a 75.5 39.2 82.2 64.2 80.8	85.3 25.6 31.9 39.0 46.3 82.3 51.2 74.1 49.6 46.1 48.4 28.1 37.2 75.6 37.2 82.1 64.2 68.1	73.0 29.8 ^b 32.4 32.9 46.0 72.3 54.8 76.1 49.8 44.4 ^a 48.4 29.1 ^b 39.7 ^a 76.2 42.9 82.0 65.2 27.4	$\begin{array}{c} 72.6\\ 29.7^{b}\\ 31.6\\ 32.6\\ 44.0\\ 72.4\\ 54.6\\ 76.2\\ 50.4\\ 43.5\\ 48.7\\ 29.4^{b}\\ 36.7\\ 77.3\\ 42.7\\ 82.2\\ 65.0\\ 27.5\end{array}$	85.1 25.3 31.6 38.8 46.1 90.1 89.0 76.3 45.1 49.5 48.2 27.5 36.5 75.3 33.1 81.8 85.4 65.4 67.6	84.1 26.1 31.6 38.6 45.7 90.4 88.3 42.6 49.3 48.8 28.2 38.1 76.0 33.7 82.3 64.8 67.8
19 NCH ₂	57.7 50.6	57.6 50.7	57.7 48.5	57.6 48.5	54.0 49.3	53.7 49.5	61.8 48.6	61.9 48.4	52.8 51.3	52.5 51.1
ĊH3	13.8	13.8	12.9	12.9	13.6	13.6	13.1	13.0	14.2	14.2
OCH ₃ 1' 6' 8'	61 F	62.0	57.6	57.6	56.3 57.6	56.4 57.7			56.0 58.1	55.8 57.9
8 16' 18'	51.5 56.3 59.6	52.0 56.6 59.5	56.3	56.2	55.9 59.2	56.3	56.3	56.1	56.5	56.2
CO ₂	170.2	59.5		171.6	57.2			170.7		171.9
ĊH3	21.3			21.5				21.4		21.5

¹³C-Nmr chemical shift data for the desacetyl-6-epi-pubescenine (2), 6-epi-neolinine-14-acetate (4), Table 1. nuttalline (6), bicolorine-14-acetate (8), delectinine-14-acetate (10) and related models.

a = reassigned [9].

b = may be interchanged.

c = hidden under the solvent signals.

- 1. Alkaloid A (6-epi-pubescenine) $R^1 = H, R^2 = OCH_3, R^3 = \beta OH, R^4 = OH, R^5 = CH_3, R^6 = Ac$
- 2. Alkaloid E (desacetyl-6-epi-pubescenine) $R^1 = H, R^2 = OCH_3, R^3 = \beta OH, R^4 = OH, R^5 = CH_3, R^6 = H$
- 3. Alkaloid D (6-epi-neolinine) $R^1 = H, R^2 = OH, R^3 = \beta OCH_3, R^4 = R^5 = R^6 = H$
- 4. Alkaloid F (6-epi-neolinine-14-acetate) $R^1 = H, R^2 = OH, R^3 = \beta OCH_3, R^4 = R^5 = H, R^6 = Ac$
- 5. Chasmanine $R^1 = CH_3$, $R^2 = OCH_3$, $R^3 = \alpha OCH_3$, $R^4 = R^5 = R^6 = H$
- 6. Alkaloid G (nuttalline) $R^1 = CH_3, R^2 = OH, R^3 = \beta OCH_3, R^4 = R^5 = R^6 = H$
- 7. Bicolorine $R^1 = R^2 = H, R^3 = \beta OH, R^4 = R^5 = R^6 = H$
- 8. Alkaloid H (bicolorine-14-acetate) $R^1 = R^2 = H, R^3 = \beta OH, R^4 = R^5 = H, R^6 = Ac$
- 9. Delectinine $R^1 = CH_3, R^2 = OH, R^3 = \beta OCH_3, R^4 = OH, R^5 = R^4 = H$
- 10. Alkaloid I (delectinine-14-acetate) $R^1 = CH_3$, $R^2 = OH$, $R^3 = \beta OCH_3$, $R^4 = OH$, $R^5 = H$, $R^4 = Ac$

similar apart from the absence in that of E of the acetate resonances (see Table 1). Confirmation of this relationship was provided by saponification of I with methanolic sodium methoxide which yielded material spectroscopically identical to E, which we have therefore called desacetyl-6-*epi*pubescenine (2).

Alkaloid F was similarly deduced to have the composition C₂₅H₃₉NO₇ (eims apparent molecular ion m/z 465; ¹³C-nmr spectrum with 25 resonances). Its ¹H nmr spectrum contained signals for the methyl of an N-ethyl group (δ 1.12, 3H, t, J=7.2 Hz), two methoxyls (δ 3.34 and 3.39, each 3H, s) and an acetoxyl substituent (δ 2.08, 3H, s). As before this information indicated that F was a norditerpenoid. The 14 α - location of the acetoxyl followed from the appearance of the 14 β -H resonance at low-field (δ 4.78, 1H, t, J=4.5 Hz), while a broad methine signal (δ 3.80, w¹/₂ = ~9 Hz) suggested 1 α -hydroxylation. The absence of a ¹H nmr absorption corresponding to a quaternary methyl, together with ¹³C resonances characteristic of a methoxylated C18 (δ 67.3) and a β -methoxylated C16 (δ 81.8) led us to 4 as the structure of F. This corresponds to the 14-O-acetate of 6-epi-neolinine (alkaloid D of our earlier investigation) (3), a conclusion which was supported by the similarities in the ¹³C-nmr spectra of the two alkaloids (see Table 1). Saponification of F with methanolic sodium methoxide gave a base spectroscopically indistinguishable from D. Thus F is 6-*epi*-neolinine 14-O-acetate (4).

Alkaloid *G* had composition $C_{24}H_{39}NO_6$ (hr-eims m/z 437.2772, calcd 437.2777) with prominent high-mass ions at m/z 422 and 406, corresponding to losses of OH and OCH₃ respectively. Once again, an inspection of the ¹H nmr spectrum of *G* revealed signals corresponding to the methyl of an N-ethyl (δ 1.06, 3H, t, J=7.2 Hz), and three methoxyl groups (δ 3.28, 3.36 and 3.44, each 3H, s) and indicated a C_{19} -skeleton. In addition, the ¹H nmr spectrum contained resonances characteristic of a 14 α -hydroxylated methine (δ 4.0, 1H, t, J=4.5 Hz), and another carbinyl proton (δ 3.88, 1H, d, J=7.4 Hz) which was coupled to a higher-field proton (δ 2.36). An inverse ¹H-¹³C correlation spectrum established that the high-field proton was attached to C-7 not C-5. Models reveal that in an aconitane system a 6α -H has a dihedral angle of ~20° with respect to H-7, and 90° to H-5, and the observed J_{6.7} of 7.4 Hz is consistent with 6β-oxygenation. The ¹³C-nmr spectrum of *G* (see Table 1) allowed us to arrive at a complete structure for the alkaloid. Thus a low field signal (δ 85.3) was typical of a 1 α -methoxylated carbon (and the location of a methoxy group at C1 was also indicated by the prominent M-31 ion in the eims of G). Two other low field resonances (δ 82.3 and 82.1) were as expected for β -methoxylated C6 and C16, while others corresponded to α -hydroxylated C14 (δ 75.6), hydroxylated C8 (74.1) and C18 (68.1). We therefore deduced that *G* has the structure *6*. This compound, does not seem to have been described before, and we have named it nuttallianidine.

Alkaloid *H* had the composition $C_{24}H_{37}NO_6$ (hr-eims m/z 435.2623, calcd 435.2621). The ir spectrum^{8d} of *H* contained a strong carbonyl absorption (v_{max}^{KBr} 1740 cm⁻¹), and an acetate functionality was also apparent from a signal in its ¹H nmr (δ 2.07, 3H, s). The ¹H nmr spectrum also exhibited resonances corresponding to the methyl of an N-ethyl group (δ 1.11, 3H, t, J=7.2 Hz), a quaternary methyl (δ 1.04, 3H, s), and a methoxy function (δ 3.29, 3H, s). As before, the sum of these requires the alkaloid to have a C₁₉ skeleton. The ¹³C-nmr spectrum of *H* (see Table 1) suggested 1 α -, 6 β -, and 8-hydroxylation, and 14 α -acetoxylation which corresponded to 8: this being the 14-O-acetate of bicolorine (7) (formerly Base B of *D. bicolor*^{6,10}). Indeed, saponification of *H* yielded bicolorine (7), and we have therefore named *H*

bicolorine 14-O-acetate.

Finally, alkaloid *I* appeared to have the composition $C_{26}H_{41}NO_8$ (eims m/z 495, with prominent fragment ions at m/z 480 and 464), while as before its ¹H-nmr spectrum contained resonances which revealed the presence of N-ethyl (δ 1.05, 3H, t, J = 7.2 Hz), three methoxyls (δ 3.44, 3.32 and 3.36, each 3H, s), and an acetate (δ 2.07, 3H, s) functionalities in accord with a norditerpenoid skeleton. A low-field resonance (δ 4.76, 1H, t, J = 4.5 Hz) indicated the 14 α -attachment of the acetoxyl, while another methine resonance (δ 3.84, 1H, s) was tentatively ascribed to a 6 α -H of a lycoctonine-type alkaloid. The¹³C-nmr of *I* (see Table 1) indicated that this skeleton was 1 α , 6 β and 16 β methoxylated, and that there was hydroxylation at C-18, as well as at 7 and 8. The structure (*I0*) thus derived corresponded to the apparently previously undescribed 14-O-acetate of delectinine (9). Saponification of *I*, as before, yielded 9 thus confirming that *I* was delectinine 14-O-acetate.

ACKNOWLEDGEMENT

Financial support of this work was provided by a grant from the Natural Sciences and Engineering Research Council of Canada.

REFERENCES AND NOTES

- 1. Y. Bai, M. H. Benn, and W. Majak, Heterocycles, 1989, 29, 1017.
- 2. M. H. Benn, J. F. Richardson, and W. Majak, <u>Heterocycles</u>, 1986, 24, 1605.
- 3. S. W. Pelletier, H. P. Chokshi, and H. K. Desai, J. Nat. Products, 1986, 49, 892.
- 4. A. Bax and S. Subramanian, J. Magn. Reson., 1986, 68, 168.
- 5. Unless otherwise stated, the comparisons were with the spectroscopic data reported in ref. 6.
- S. W. Pelletier, N. V. Mody, B. S. Joshi, and L. L. Schram, "Alkaloids: Chemical and Biological Perspectives", Vol. 2, ed. S. W. Pelletier, J. Wiley and Sons, New York, 1984, p. 205.
- 7. A. G. Gonzalez, G. de la Fuente, M. Reina, R. Diaz, and I. Timon, Phytochemistry, 1986, 25, 1971.
- 8. Spectroscopic measurements were made as follows:
 - (a) eims and hr-eims were measured using a 70 eV ionizing electron beam impacting on the sample placed on a heated probe using Kratos MS-80 and VG-7070 instruments;
 - (b) the ¹³C-nmr spectra were measured with Bruker AM 400 and ACE 200 spectrometers, the samples being dissolved in CDCl₃ and the solvent signal (δ 77.0) used as an internal reference for which all chemical shifts (δ) are reported in ppm;
 - (c) the ¹H nmr spectra were measured with the same spectrometers and solutions as for the ¹³C-nmr spectra, the residual CHCl₃ signal (δ 7.27 ppm) was used as an internal reference for which all chemical shifts (δ) are reported in ppm;
 - (d) ir spectra were measured with a Nicolet system, the samples being dispersed in KBr.
- S. W. Pelletier, S. K. Srivastava, B. S. Joshi, and J. D. Olsen, <u>Heterocycles</u>, 1985, 23, 331.; but see H. Bando, K. Wada and T. Amiya, <u>Heterocycles</u>, 1988, 27, 2167 for C10 and C13 reassignment.
- 10. P. Kulanthaivel, M. H. Benn, and W. Majak, Phytochemistry, 1986, 25, 1511.

Received, 7th May, 1990