
A NEW SYNTHESIS OF 5,6-DIHYDRO-4<u>H</u>-1,3,4-THIADIAZINE 1,1-DIOXIDES FROM METHYL STYRYLSULFONYLACETATE

Masahiko Takahashi* and Ichiro Yamashita Department of Industrial Chemistry, Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan

In the previous papers we have shown that β -keto, β -cyano, and β -ethoxycarbonyl- β -sulfonylenamines are good building blocks for 5-sulfonylpyrimidines,¹ 4-sulfonylpyrazoles,² and 4sulfonylisoxazoles. As an extension of this work we took an interest in the related enamine, β -vinylsulfonyl- β -methoxycarbonylenamine (3). Although divinylsulfones are reported to cyclize on treatment with amines to 2,3,5,6-tetrahydro-1,4-thiazine 1,1-dioxides,3 functionalized vinylsulfonylenamine such as 3 seems to give relatively undeveloped heterocycles, 2,3-dihydro-1,4-thiazine 1,1-dioxides $(4)^4$ on substitution of the dimethylamino group by amines followed by intramolecular Michael type addition. As (2)-styrylsulfonylacetic acid (1) has become readily available recently from phenylacetylene and thioglycolic acid,⁵ we have tried to prepare $\underline{4}$ from $\underline{1}$. The acid ($\underline{1}$) was methylated in a usual manner to give methyl ester (2) in 52% yield. The ester (2) was converted on treatment with N,N-dimethylformamide dimethylacetal in refluxing methanol to vinylsulfonylenamine (3) in 77% yield. In the preliminary experiment this enamine (3) reacted with acetamidine similarly to the previously reported sulfonylenamines! to yield 5-styrylsulfonylpyrimidinone $(\underline{5})$. However, all attempts to substitute the dimethylamino group of 3 by primary amines followed by cyclization to 4 were unsuccesful.

Next, we intended to prepare the aza analogue of <u>4</u>, 5,6-dihydro-1,3,4-thiadiazine 1,1dioxide (<u>8</u>) from <u>2</u>. Since 5,6-dihydro-1,2,4-thiadiazine 1,1-dioxides (<u>6</u>) have been obtained from styrylsulfonyl chloride and amidines (R=H, X=alkyl or aryl),⁶ or N-styrylsulfonyl-S- methylisothioureas (R=alkyl, X=SMe),⁷ hydrazones (<u>7</u>) are expected to give <u>8</u> in a similar fashion. Treatment of a solution of <u>2</u> in pyridine with arenediazonium chlorides in a usual manner gave methyl styrylsulfonylglyoxylate arylhydrazones (<u>7a-h</u>) in 32-84% yields (Tables 1 and 2). Cyclization of <u>7a</u> and <u>c-f</u> was achieved in 38-77% yields by refluxing a mixture of <u>7</u> and triethylamine in methanol for 3-11 h. Hydrazone (<u>7b</u>) could be cyclized to <u>8b</u> when 1,8diazabicyclo[5,4,0]undec-7-ene (DBU) was used as a base, while the products from <u>7g</u> and <u>h</u> were difficult to purify. The structures of the products were unambigouesly revealed by the 'H-nmr spectra; <u>8a</u> exhibited a doublet at δ 3.74 and a triplet at δ 5.97 ppm ascribable to the protons at the C-6 and C-5 positions, respectively, and other products (<u>8b</u>, <u>c</u>, <u>e</u>, and <u>f</u>) also showed the same A₂X patterns (J_{AX}=5 Hz). On the other hand, the ring protons of <u>8d</u> in the nmr spectrum were observed in an ABX pattern similar to those of <u>6</u>^{6,7} probably due to inhibition of ring inversion by the bulky o-chlorophenyl substituent. In spite of the wellknown chemistry of 1,3,4-thiadiazines⁸ no attention has been paid to their 1,1-dioxides.⁹ To our knowledge no preparative methods of the 1,1-dioxides have been reported yet and our results reported here appear to be the first example of 1,3,4-thiadiazine 1,1-dioxides.

Compounds	Ar	Yield	mp∕°C	Molecular	Found % (Calcd %)		
		X	(Solvent)	Formula (mw)	С	H	N
<u>7a</u>	C.6H5	84	117-119	C17H16N2O4S	59.31	4.82	8.13
			(MeOH)	(344.48)	(59.29	4.68	8.13)
<u>7b</u>	4-MeC₅H₄	44	125-127	C18H18N204S	60.48	5.01	7.77
			(MeOH)	(358.41)	(60.32	5.06	7.82)
<u>7c</u>	4-C1C6H4	61	128-130	C17H15N204C1S	53.80	7.30	4.09
			(MeOH)	(378.83)	(53.90	7.39	3.99)
<u>7d</u>	2-C1C ₆ H₄	79	135-137	C17H15N204ClS	53.84	3.95	7.22
			(MeOH)	(378.83)	(53.90	3.99	7.39)
<u>7e</u>	3,4-C12C6H3	47	140-142	C ₁₇ H ₁₄ N ₂ O ₄ Cl ₂ S	49.58	3.47	6.62
			(MeOH)	(413.27)	(49.41	3.41	6.78)
<u>7f</u>	4-BrC ₆ H ₄	42	141-142	C17H15N204BrS	48.20	3.84	6.48
			(MeOH)	(423.28)	(48.24	3.57	6.62)
<u>7g</u>	4~NO2C6H4	57	154-156	C17H15N306S	52.22	4.18	10.76
			(MeOH)	(389.38)	(52.44	3.88	10.79
<u>7h</u>	4~MeOC ₆ H₄	32	128-130	C18H18N205S	57.49	4.88	7.37
			(MeOH)	(374.41)	(57.74	4.84	7.48)
<u>8a</u>	CoHs	77	196-198	C ₁₇ H ₁₆ N ₂ O ₄ S	59.29	4.86	8.13
			(MeOH)	(344.38)	(59.29	4.68	8.13)
<u>8b</u>	4-MeC₀H₄	38	158-160	C18H18N2O4S	60.30	5.07	7.64
			(MeOH)	(358.41)	(60.32	5.06	7.82)
<u>8c</u>	4-C1C6H4	46	185-187	C17H15N204C1S	53.90	4.28	7.32
			(MeOH)	(378.83)	(53.90	3.99	7.39)
<u>8d</u>	2-C1C6H4	38	178-180	C17H15N204C1S	53.90	4.02	7.17
			(MeOH)	(378.83)	(53.90	3.99	7.39)
<u>8e</u>	3,4-C12C6H3	39	197-199	C17H14N204C12S	49.48	3.46	6.63
			(MeOH)	(413.27)	(49.41	3.41	6.78)
<u>8f</u>	4-BrC6H₄	70	210-212	C17H15N2O48rS	47.98	3.79	6.55
			(MeOH-CHCl ₃)	(423.28)	(48.24	3.57	6.62)

Table 1. Physical and analytical data of compounds $\underline{7}$ and $\underline{8}$

Table 2. Spectral data of compounds $\underline{7}$ and $\underline{8}$

Com-	Ms m/z (M*)	Ir			'H-Nmr		
pouds		KBr, cm ⁻¹			δ, ppm (solvent)		
<u>7a</u>	344	3170	1680	1600	3.87.(s, 3 H), 6.80 (d, J=12 Hz, 1 H), 7.14-7.75		
		1525	1460	1315	(m, 11 H), 12.27 (br s, 1 H) (acetone-d _s)		
<u>7b</u>	358	3160	1680	1595	2.10 (s, 3 H), 3.60 (s, 3 H), 6.32 (d, J=12 Hz, 1 H),		
		1520	1440	1315	6.75-7.42 (m, 10 H), 12.18 (br s, 1 H) (CDC1 ₃)		
<u>7c</u>	378	3250	1700	1600	3.60 (s, 3 H), 6.31 (d, J=12 Hz, 1 H), 6.78-7.40 (m,		
		1490	1290	1220	10 H), 12.10 (br s, 1 H) (CDC1 _a)		
<u>7d</u>	378	3170	1690	1535	3.88 (s, 3 H), 6.57 (d, J=12 Hz, 1 H), 7.03-7.74 (m,		
		1330	1240	1155	10 H), 12.74 (br s, 1 H) (CDC1 ₃)		
<u>7e</u> 412	412	3250	1705	1600	3.62 (s, 3 H), 6.30 (d, J=12 Hz, 1 H), 6.78-7.38 (m,		
		1570	1510	1480	9 H), 12.04 (br s, 1 H) (CDC1 ₃)		
<u>7f</u> 422	422	3230	1675	1520	3.59 (s, 3 H), 6.31 (d, J=12 Hz, 1 H), 6.75-7.38 (m,		
		1490	1440	1330	10 H), 12.08 (br s, 1 H) (CDC1 _s)		
7g	389	3250	1715	1595	3.64 (s, 3 H), 6.58 (d, J=12 Hz, 1 H), 7.02-7.35 (m,		
		1535	1500	1335	6 H), 7.39 (d, J=9 Hz, 2 H), 8.02 (d, J=9 Hz, 2 H),		
					11.95 (br s, 1 H) (DMSO-d ₆)		
<u>7h</u>	374	3160	1680	1600	3.79 (s, 3 H), 3.84 (s, 3 H), 6.57 (d, J=12 Hz, 1 H),		
		1530	1435	1400	6.78-7.66 (m, 10 H), 12.54 (br s, 1 H) (CDCl ₃)		
<u>8a</u>	344	1695	1530	1490	3.74 (d, J=5 Hz, 2 H), 3.89 (s, 3 H), 5.97 (t, J=5		
-		1450	1435	1310	Hz, 1 H), 7.07-7.41 (m, 9 H) (CDCl ₃)		
<u>8b</u>	358	1690	1495	1430	2.25 (s, 3 H), 3.72 (d, J=5 Hz, 2 H), 3.88 (s, 3 H),		
		1310	1250	1220	5.92 (t, J=5 Hz, 1 H), 7.05~7.33 (m, 9 H) (CDC1 ₃)		
<u>8</u> c	378	1725	1525	1490	3.72 (d, J=5 Hz, 2 H), 3.87 (s, 3 H), 5.90 (t, J=5		
		1450	1435	1320	Hz, 1 H), 7.02-7.35 (m, 9 H) (CDCl _a)		
<u>8d</u>	378	1710	1525	1480	3.52 (dd, J=3 and 14 Hz, 1 H), 3.88 (s, 3 H), 4.00		
		1440	1335	1305	(dd, J=12 and 14 Hz, 1 H), 5.80 (dd, J=3 and 12 Hz,		
					1 H), 7.02-7.20 (m, 9 H) (CDC1 ₃)		
<u>8e</u>	412	1735	1540	1475	3.75 (d, J=5 Hz, 2 H), 3.90 (s, 3 H), 5.89 (t, J=5		
		1435	1320	1270	Hz, 1 H), 7.03-7.38 (m, 8 H) (CDC1 ₃)		
<u>8 f</u>	422	1720	1530	1490	3.75 (d, J=5 Hz, 2 H), 3.91 (s, 3 H), 5.90 (t, J=5		
		1435	1320	1260	Hz, 1 H), 7.00-7.22 (m, 9 H) (CDCl ₃)		

EXPERIMENTAL

Melting points were determined by using a Yanaco micromelting point apparatus. Ir spectra were obtained on a JASCO A-102 spectrophotometer. Mass and 'H-nmr spectra were determined on a JEOL JMS-DX 300 spectrometer and JEOL JMN-PMX 60 spectrometer, respectively. Microanalyses were carried out with a Yanaco CHN CODER MT-5.

<u>Methyl (Z) -styrylsulfonylacetate</u> (<u>2</u>) A mixture of <u>1</u>⁵ (158 mg, 0.70 mmol) and one drop of concentrated sulfuric acid in MeOH (15 ml) was refluxed for 15 h. After removal of the solvent the residue was recrystallized from MeOH to give <u>2</u> (88 mg, 52%), mp 79-81°C. Ir (KBr): 1740, 1610, 1440, 1300, 1280, 1160 cm⁻¹. ¹H-Nmr (acetone-d₆): δ 3.68 (s, 3 H), 4.19 (s, 2 H), 6.73 (d, J=12 Hz, 1 H), 7.18-7.74 (m, 6 H). Ms: m/z 240 (M⁺). Anal. Calcd for C₁₁H₁₂O₄S: C 55.00; H, 5.04. Found: C, 54.72; H, 5.01.

<u>Methyl 3-dimethylamino-2-[(Z)-styrylsulfonyl]propenoate</u> (3) A mixture of 2 (2.4 g, 10 mmol) and N,N-dimethylformamide dimethylacetal (4.8 g, 40 mmol) in MeOH (5 ml) was refluxed for 7 h. After evaporation of the solvent the residue was column chromatographed on silica gel using CHCl₃ as an eluent to remove excess dimethylacetal. The product obtained from the main elution band was recrystallized from ethyl acetate to give 3 (2.3 g, 77%), mp 109-112°C. Ir (KBr): 1690, 1615, 1435, 1410, 1375, 1290 cm⁻¹. ¹H-Nmr (acetone-d₆): δ 2.95 (br s, δ H), 3.59 (s, 3 H), 6.60 (d, J=12 Hz, 1 H), 6.96 (d, J=12 Hz, 1 H), 7.22-7.63 (m, 6H). Ms: m/z 295 (M*). Anal. Calcd for C_{1.4}H_{1.7}NO₄S: C, 56.93; H, 5.80; N, 4.74. Found: C, 56.68; H, 5.74; N, 4.57.

<u>2-Methyl-5-[(Z)-styrylsulfonyl]pyrimidin-4-one</u> (5) A mixture of <u>3</u> (200 mg, 0.68 mmol), acetamidine hydrochloride (83 mg, 0.88 mmol), and sodium carbonate (47 mg, 0.44 mmol) in a mixed solvent (MeOH 8 ml and water 3 ml) was refluxed for 8 h. After evaporation of the solvent the residue was neutralized with aq. acetic acid, and the precipitates formed were collected and recrystallized from MeOH to give <u>5</u> (38 mg, 20%), mp 250-252°C. Ir (KBr): 3050 -2630, 1620, 1550, 1480, 1445 cm⁻¹. 'H-Nmr (DMSO-d_s): & 2.37 (s, 3 H), 7.17-7.76 (m, 7 H), 8.39 (s, 1 H). Ms: m/z 276 (M*). Anal. Calcd for $C_{13}H_{12}N_2O_3S$: C, 56.51; H, 4.38; N, 10.14 . Found: C, 56.36; H, 4.32; N, 10.07.

Methyl (Z)-styryl<u>sulfonylgiyoxylate_arylhydrazones</u> (<u>7a-h</u>)

A general procedure. To a solution of $\underline{2}$ (1.5 mmol) in pyridine (5 ml) which was stirred and cooled below 5°C, aq. arenediazonium chloride (2.5 mmol) prepared in a usual manner was added dropwise. After additional stirring for 1 h the precipitates formed were collected and recrystallized to give $\underline{7}$.

<u>Methyl 4-aryl-5-phenyl-5,6-dihydro-1,3,4-thiadiazine 1,1-dioxide-2-carboxylates</u> (<u>8a-f</u>) A general procedure for <u>8a</u> and <u>c-f</u>. A mixture of <u>7</u> (0.40 mmol) and excess triethylamine (4.0 mmol) in MeOH (8 ml) was refluxed for 3-11 h. After evaporation of the solvent the residue was recrystallized to give $\underline{8}$.

A procedure for <u>8b</u>. A mixture of <u>7b</u> (200 mg, 0.54 mmol) and DBU (60 mg, 0.39 mmol) in MeOH (8 ml) was refluxed for 5 h. After evaporation of the solvent the residue was recrystallized to give <u>8b</u>.

REFERENCES

- 1. M. Takahashi, T. Mamiya, and M. Wakao, J. Heterocycl. Chem., 1986, 23, 77.
- M. Takahashi, T. Mamiya, H. Hasegawa, T. Nagai, and H. Wakita, <u>J. Heterocycl. Chem</u>., 1986, 23, 1363.
- 3. D. Kleffel, C. Kratky, and H. H. Otto, Liebigs Ann. Chem., 1985, 1012.
- R. J. Stoodley, "Advances in Heterocyclic Chemistry: 1,4-Thiazines and Their Dihydro Derivatives," Vol. 24, ed. by A. R. Katritzky and A. J. Boulton, Academic Press, Inc., New York, 1979, pp. 293-361.
- 5. M. V. R. Reddy and S. Reddy, Synthesis, 1984, 322.
- 6. W. L. Matier and W. T. Comer, <u>J. Org. Chem.</u>, 1974, <u>39</u>, 3080.
- 7. K. Hasegawa and S. Hirooka, Bull. Chem. Soc. Jpn., 1972, 45, 1893.
- G. W. Stacy, "Heterocyclic Compounds: Oxadiazines, Thiadiazines, and Their Benzo Derivatives," Vol. 7, ed. by R. C. Elderfield, John Wiley & Sons, Inc., New York, 1961, pp. 797-842.
- 9. A. Lawson and R. B. Tinkler, Chem. Rev., 1970, 70, 593.

Received, 28th May, 1990