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- A novel synthetic methodology forthe acyclic acetal functionality 

was developed. The rationally designed phosphonate analogue (2) of acyclovir 

monophosphate was active against herpesviruses. 

The discovery of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir, I) as a 

~henatherapeuti~ally effective nucleoside for the treatment of the herpes simplexvirus 

type 1 and 2 (HsV-I and HSV-2) has stimulated a great interest in the area of acyclic 

nucleoside analogues.' In cells, acyclovir is phosphorylated by the HSV induced 

thymidine kinase to the monophosphate ( Z ) ;  this is in turn phosphorylated further by 

cellular kinase to the di- and ultimately to the tri-phosphate, which is a potent 

inhibitor of viral DNA polymera~e.~.~ Metabolically end chemically stable phosphonate 

analogues,a which mimic the acyclovir manophosphate (2). thus bypassing the initial 

m~ymatic phosphorylatian couldbe highlyprmising as broad spectrum antiviralagents. 

m t h e  series of (phosphonmethoxy)alkylprine derivatives, the spacial location of the 

oxygen aton in the acyclic chain has been demonstrated to play a crucial role for anti- 

herpesvirus and anti-retmvirus Our strategy to mimic the acyclovir 

monophosphate as close as possible led to the discovery of the herpesvirus active 

phosphonate (3 ) .  



First, we developed a new methodalagy to assemble the acyclic acetal functionality as 

shown in the synthesis of the thymine analogue (1) (Scheme I). The Vorbruggen type 

coupling7 of bisbenzoyloxymethyl ether ( r l ) s  and silylated thymine in the presence of 

trimethylsilyl tri-fluoramethanesulfonate (0.2 equiv.) in M,C1, at O°C provided the 

acylacetal ( 5 )  (45%). Reactionof 5with diethyl hydroxymethylphosphonate (1.2 equiv.) 

in the presence of trimethylsilyl trifluormethanesulfonate (1.2 equiv.) in M,Cl, at 

25-C afforded the phosphonate (6) (65%) which upon treatment with trimethylsilyl 

bromide (5 equiv.) in DIIF at 2S°C gave the acetal phosphonate (1) (75%). 

Unfortunately, when the above reaction sequence was applied to the synthesis of purine 

analogues, undesired N-7 is-rs were formed exclusively. For example, coupling of 4 

with silylated adenine or silylated 6-chlompurine in the presence of trimethylsilyl 

trifluoromethaneaulfonate gave the _N-7 isamere ( g )  (39%) and (?)  (42%) only. The 

attachment of the side chain at the 11-7 psition in (and 2) was confirmed by the I3C- 

'H two dimensional long-range heteronuclear correlation spectroscopy, in which the C, 

and the 1'-H exhibited e strong interaction. This regioselectivity was further 

ascertained by the X-ray crystallography as shown in Figure I. Although the highly 

regioselective kinetic formation of anN-7-(pentofuranosy1)guanine was rep~rted,'~ the 

exclusive formation of B appeared to be the first case in the adenine nucleosidetian. 

Scheme I 

(a) ~il~l~tedthymine, CI',SO,Sine,; (b) (EtO),P(O)CH,OH, LT,SO,Sine,; (c) Me,SiBr,; (d) 

silylated adenine (for 8) or silylated 6-chloropurine (for 2). CF,SO,Sine,. 
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In contrast to the Vorbruggen type coupling, the S,2 displacement reaction of the 

purine sodium salt on the chloromethyl ether (11) produced only y-9 is-rs as 

illustrated in Scheme 11. Addition of bischloromethoxymethane @)I' to the solution 

of sadiun, diethyl phosphite in THF at -70DC produced the chlorenethyl ether (11) which 

was used promptly in the subsequent transfomatione. Reaction of 11 vith 2-amino-6- 

chloropurine sodium salt in D m  at 2SDC to give the W-9 i e m r  (13) (42% from 10). 

saponificationwith sodiummethoxide followed by sodium hydroxide to form 14 (85%), and 

depratection with trimethylsilyl bromide provided the phosphonate (3) (68%).lZ 

Likewise, the N-9 adenine phosphonate (12) was also prepared in 47% yield. The side 

chain attachment at th 3-9 position in 3 was ascertained by its "C m (6 118.194 for 

the C, signal) and uv (Amax 252 end 274 nm) spectra which were consistent vith the 

published data of 8-9 aUtylated guanine derivatives.lS 

In antiviral tests carried out in Vero (for HSV) and mc-5 for (HCHV, human 

cytomegalovirus) cells the IC.,'s (50% inhibitory concentration) for inhibition of the 

replication of HSV-1 and 2 of H W  were 2.6, 11 and 5.0 pg/ml for 3 (cf. 0.5, 0.5 and 

40 w/ml for acyclovir). 

In conclusion, a novel route has been developed for the acyclic acetal functionality 

and has been used in the synthesis of a phosphonate isostere of acyclovir 

monophosphate, which has exhibited a g m d  anti-herpesvirus activity. 

Scheme I1 

e 

(a )  (EtO),PNe; (b) adenine sodium salt (for 12) or 2-amino-6-chloropurine sodium salt 

(for l,);(c) neONa; (d) 1N-NeOH; ( e )  ne.SiBr; (f) NaHm,. 
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