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Bbstract - A novel synthetic methodology for the acyclic acetal functicnality
was developed. The rationally designed phosphonate analogue (3) of acyclovir

monophosphate was active against herpesviruses.

The discovery of 9-[{2-hydroxyethoxy}methyl]guanine {acyclovir, 1) as a
chemotherapeutically effective nucleoside for the treatment of the herpes simplex virus
Ltype 1 and 2 {HSV-1 and HSV-2} has stimulated a great interest in the area of acyclic
nucleoside analogues.® In cells, acyclovir is phosphorylated by the HSV induced
thymidine kinase to the monophosphate (2); this is in turn phosphorylated further by
cellular kinase tc the di- and ultimately to the tri-phosphate, which is a potent
inhibitor of viral DNA polymerase.”-® Metabolically and chemically stable phogphonate
analogues,® which mimic the acyclovir monophosphate (2), thus bypaseing the initial
enzymatic phosphorylation could be highly promising as broad spectrum antiviral agents.
In the series of (phosphonomethoxy}alkylpurine derivatives, the spacial location of the
oxygen atam in the acyclic chain has been demonstrated to play a crucial role for anti-
herpesvirus and anti-retrovirus activity.®'® Our strategy to mimic the acyclovir
monophosphate as close as poasible led to the discovery of the herpesvirus active

phosphonate (3).
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First, we developed a new methodology to assemble the acyclic acetal functicnality as
shown in the synthesis of the thymine analogue (7) (Scheme I). The Vorbruggen type
coupling” of bisbenzoyloxymethyl ether (4)® and silylated thymine in the presence of
trimethylsilyl tri-fluoromethanesulfonate (0.2 equiv.) in CH,Cl, at 0°C provided the
acylacetal (5) {45%). Reaction of 5 with diethyl hydroxymethylphosphonate (1.2 equiv.)
in the presence of trimethylsilyl triflucromethanesulfonate (1.2 equiv.) in CH.Cl, at
25°C afforded the phosphonate (6) {65%) which upon treatment with trimethylsilyl
bromide (5 equiv.} in DMF at 25°C gave the acetal phosphonate (7) (75%).
Unfortunately, when the above reaction sequence was applied to the synthesis of purine
analogues, undesired N-7 iscmers were formed exclusively. For example, coupling of 4
with silylated adenine or silylated 6~chloropurine in the presence of trimethylsilyl
trifluoromethanesulfonate gave the N-7 iscmers (8) (39%) and (3) (42%) only. The
attachment of the side chain at the N-7 position in 8 (and 9} was confirmed by the *=C-
*H two dimensional long-range heteronuclear correlation spectroscopy, in which the Cg
and the 1'-H exhibited a strong interaction. This regloselectivity was further
ascertained by the X-ray crystallography as shown in Figure I. Although the highly
regioselective kinetic formation of an N-7-(pentofuranosyl)guanine was reported,*® the

exclusive formation of B appeared to be the first case in the adenine nuclecsidation.

Scheme I
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(a) silylated thymine, CF,S0,8iMe,; (b) {Et0)_,P(O)CH.OH, CF,S0,SiMe,; {c) Me,8iBr,; (d)

silylated adenine (for 8) or silylated 6-chloropurine (for 3), (F.S0.5iMe,.
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In contrast to the Vorbruggen type coupling, the 8,2 displacement reaction of the
purine sodium salt on the chloremethyl ether (11) produced only N-9 isomers as
illustrated in Scheme II. Addition of bischloromethoxymethane {(10)™* to the solution
of sodium diethyl phosphite in THF at -70°C produced the chloromethyl ether (11) which
was used promptly in the subsequent transformations. Reaction of 11 with 2-amino-6-
chleropurine sodium salt in DMF at 25°C to give the N-9 isomer (13) (42% from 10),
saponification with sodium methoxide followed by sodium hydroxide to form 14 (85%), and
deprotection with trimethylsilyl bromide provided the phosphonate (3) (68%).'%
Likewise, the N-9 adenine phosphconate (12) was alsc prepared in 47% yield. The side
chain attachment at th N-9 position in 3 was ascertained by its **C nmr (& 118.194 for
the €5 signal) and uv {imax 252 and 274 nm) spectra which were consistent with the

published data of N-9 alkylated guanine derivatives.*?

In antiviral tests carried out in Vero (for HSV) and MRC-5 for (HCMV, human
cytomegalovirus) cells the ICs,'s (50% inhibitory concentration) for inhibition of the
replication of HSV-1 and 2 of HCMV were 2.6, 11 and 5.0 pg/ml for 3 {cf. 0.5, 0.5 and

40 ug/ml for acyclovir).

In conclusion, a novel route has been developed for the acyclic acetal functionality
and has been used in the synthesis of a phospheonate iscstere of acyclovir

moncphosphate, which has exhibited a good anti-herpesvirus activity.
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(a) (EtQ).PNa; {b) adenine sodium salt (for 12) or 2-amino-6-chloropurine sodium salt

(for 13):(c) MeONa; (d) iIN-NaCH; (e) Me,SiBr; (f) NaHCO,.
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Fiqure I oOrtep Drawing Of Compound (8)
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