EPOXIDATION OF 5-ALKYLIDENE AND 5-BENZYLIDENE SUBSTITUTED 1,3-DIOXANE-4,6-DIONE DERIVATIVES BY HYDROGEN PEROXIDE WITHOUT CATALYST

Takashi Tsuno and Kunio Sugiyama* Department of Industrial Chemistry, College of Industrial Technology, Nihon University, Narashino-shi, Chiba 275, Japan

Abstract — 5-Alkylidene and 5-benzylidene substituted 1,3-dioxane-4,6-dione derivatives readily reacted with hydrogen peroxide at room temperature without any catalyst to give the corresponding spiro- and polyspirocyclic compounds containing oxirane ring in good yields.

The epoxidation of α , β -unsaturated carbonyl compounds with hydrogen peroxide is one of very important and useful reactions in organic synthesis and has required careful pH control of reaction¹ and/or the presence of catalyst.² Catalysts for the epoxidation have been mainly investigated,² while there are very few report on α , β -unsaturated carbonyl compounds to be epoxidized with hydrogen peroxide in the absence of catalyst. We noted that 5-alkylidene and 5-benzylidene Meldrum's acids (1a, 1b, 1d, and 1g) are very reactive electrophiles and susceptible to attack by some nucleophiles such as sodium methoxide, 3 amines, 4 and aryloxide ions⁵ to give the corresponding zwitterionic adducts. Therefore, these Meldrum's acids were expected to be oxidized under milder conditions with hydrogen peroxide alone and such epoxidation of these acids (1a-g), 8-alkylidene-6,10-dioxa-7,9dioxospiro[4.5]decane (2a-d), and 3-alkylidene-1,5-dioxa-2,4-dioxospiro[5.5]undecane (3a-d) was tried to afford the corresponding epoxides in good yields. The starting compounds 1a-d, 1f, and 1g were obtained by the reaction of Meldrum's acid with the corresponding ketones or aldehydes according to a slightly modified procedure of the reported methods. 3a,6 Similarly, 1e, 2a-d, and 3a-d were easily synthesized by the condensation between the corresponding active methylene compounds and ketones or aldehydes.

A typical procedure of the epoxidation is as follows. Isobutylidene Meldrum's acid (1a, 1.45 g, 7.3 mmol) was added to a solution of 35 % hydrogen peroxide

Table 1. Epoxidation of 5-Alkylidene and 5-Benzylidene Substituted 1,3-Dioxane-4,6-dione Derivatives with Hydrogen Peroxide in Acetonitrile^a)

Entry	Substrat	te R ₁ R	2 ^R 3	R4	Time/min	Epoxide ^b) Yield/%	mp/°C ^{C)}
1	1a	і-С ₃ Н ₇ Н	CH 3	CH 3	10	4a	76	73-74
2	1b	сн, сн.	3 CH ₃	СНЗ	30	4 b	69	124
3	1c	-(CH ₂) ₄ -	- CH3	CH	1200	4c	74	116-117
4	1d	-(CH ₂) ₅ -	- Сн ₃	СН3	180	4d	37	133
5	1e	i-C4H9 H	CH	CH	15	4e	29	77-78
6	1f	с-С ₆ Н ₁₁ Н	СНЗ	CH ₃	10	4f	67	75-78
7	1g	Ph CH.	3 CH3	СНЗ	10	4 g	54	126-132 ^{d)}
8	2a	i-C ₃ H ₇ H	- (Cł	$(\frac{1}{2})_4 -$	10	5a	74	102
9	2b	сн, сн.	3 - (CF	$(\frac{1}{2})_4^{-1}$	30	5b	15	124
10	2c	-(CH ₂) ₄ -	– – (CH	$\frac{1}{2}_{4}$	60	5c	40	145-146
11	2đ	-(CH ₂) ₅ .	- – (CH	$\frac{1}{2}_{4}^{4}$	40	5 d	57	148-152
12	3a	i-C ₃ H ₇ H	– (CH	$\{\frac{1}{2}\}_{5}^{-1}$	10	6a	76	96-98
13	3b	СН3 СН.	- (CF	$\frac{1}{2}_{5}$	15	6b	53	136-137
14	3c	-(CH ₂) ₄	(Cł	$\frac{1}{2}$	90	6c	49	148-149
15	3đ	-(CH ₂) ₅ .	(CF	¹ ₂) ₅ -	40	6d	37	158-160

a) All reactions were carried out at room temperature under an argon atmosphere. b) All epoxides gave satisfactory ir, 1 H, and 13 C nmr spectra, and elementary analyses. c) Melting points are uncorrected. d) Decomposed.

(3 ml) in acetonitrile⁸ (17 ml) with stirring at room temperature. The reaction was monitored by the disappearance of **1a** with tlc (Silica gel, Merck, 60 F_{254} , hexane:acetone=8:2, v/v). After 10 min, to the reaction mixture was added 10 % sodium hydrogensulfite solution (20 ml) and extracted with dichloromethane (20 ml × 2). The organic layer was dried over anhydrous magnesium sulfate, and concentrated to give crude crystals. Recrystallization from ether/hexane gave the epoxide, 2-isopropyl-6,6-dimethyl-1,5,7-trioxa-4,8-dioxospiro[2.5]octane (**4a**, 1.19 g, 76 %) mp 73-74 °C; ir (CHCl₃) 1740 and 1760 cm⁻¹; ¹H nmr (CDCl₃) δ =1.01(3H,

d, J=7.1 Hz), 1.20(3H, d, J=7.1 Hz), 1.82(3H, s), 1.85(3H, s), 1.99(1H, d septet, J=9.3 and 7.1 Hz), and 3.43(1H, d, J=9.3 Hz); 13 C nmr (CDCl₃) δ =18.3(q), 19.9(q), 26.4(d), 27.6(q), 28.3(q), 55.4(s), 73.5(d), 105.9(s), 161.7(s), and 163.7(s); Anal. Found: C, 56.07 %; H, 6.71 %. Calcd for $C_{10}H_{14}O_5$: C, 56.07 %; H, 6.59 %. Similarly, the epoxidation of **1b-g**, **2a-d**, and **3a-d** was carried out and yields were shown as Table 1.

The epoxidation with hydrogen peroxide in acetonitrile is possible to proceed via peroxycarboximidic acid,⁹ then, we have investigated the solvent effect on the epoxidation of 1a and 1g by the use of several other solvents in order to clarify this question (Table 2). When methanol or t-butyl alcohol as solvent was employed, both of 1a and 1g allowed rapidly to react with hydrogen peroxide. However, the epoxidation of two-phase system using benzene as solvent proceeded quite slowly, although these conditions have eventually completed oxidation. Therefore, it is suggested that the epoxidation of 1a-g, 2a-d, and 3a-d occurred directly with hydrogen peroxide.

1	Solvent	Time	Yield/%	
а	MeOH	10 min	62	
	t-BuOH	10 min	88	
	Benzene ^{b)}	22 h	85	
g	MeOH	10 min	62	
	t-BuOH	10 min	75	
	Benzene ^{b)}	24 h	78	

Table 2. Solvent Effect on Epoxidation of **1a** and **1g** with Hydrogen Peroxide^{a)}

a) All reactions were carried out in the presence of **1a** or **1g** (7 mmol) and 35 % hydrogen peroxide (3 ml) in solvent (17 ml). b) Two-phase system.

The epoxidation of usual olefins with hydrogen peroxide alone affords products of incomplete oxidation or no products. The epoxidation of α,β -unsaturated esters has been performed by using peracids^{9,10} or alkaline hydrogen peroxide.^{1a} Diethyl ethylidenemalonate, a compound analogous to 5-alkylidene substituted 1,3-dioxane-4,6-diones, has been epoxidized only with alkaline hydrogen peroxide.^{1a} However, the epoxidation of **1a-g**, **2a-d**, and **3a-d** with hydrogen peroxide alone took place completely and more reactively than that of ordinary olefins.

Thus, it is particularly interesting to note that the epoxidation of **1a-g**, **2a-d**, and **3a-d** with hydrogen peroxide proceeds at room temperature, without the use of bufferring system and catalyst.

REFERENCES AND NOTES

- 1. a) G. B. Payne, <u>J. Org. Chem.</u>, 1959, **24**, 2048; b) G. B. Payne, <u>J. Am. Chem.</u> <u>Soc.</u>, 1958, **80**, 6461; c) G. B. Payne, <u>ibid.</u>, 1959, **81**, 4901; d) C. A. Bunton and G. J. Minkoff, J. Chem. Soc., **1949**, 665.
- G. B. Payne and K. B. Williams, <u>J. Org. Chem.</u>, 1959, 24, 54; K. S. Kirshenbaum and K. B. Sharpless, <u>ibid.</u>, 1985, 50, 1979; M. Miyashita, T. Suzuki, and A. Yoshikoshi, <u>Chemistry Lett.</u>, 1987, 285; T. Oguchi, Y. Sakata, N. Takeguchi, K. Kaneda, Y. Ishii, and M. Ogawa, <u>ibid.</u>, 1989, 2053; Y. Ishii and M. Ogawa, Yuki Gosei Kagaku Kyoukaishi, 1989, 47, 889.
- 3. a) G. Swoboda, J. Swoboda, and F. Wessely, <u>Monatsh. Chem.</u>, 1964, 95, 1283;
 b) P. Schuster, O. E. Polansky, and F. Wessely, <u>Tetrahedron, suppl. 8, part</u>
 <u>2</u>, 1966, 463; c) P. Schuster, <u>Österreichische Chemiker-Zeitung</u>, 1967, 68, 252; d) F. J. Kunz, P. Margaretha, and O. E. Polansky, <u>Chimia</u>, 1970, 24, 165.
- 4. C. F. Bernasconi and S. Fornarini, <u>J. Am. Chem. Soc.</u>, 1980, **102**, 5329.
- 5. C. F. Bernasconi and G. D. Leonarduzzi, J. Am. Chem. Soc., 1980, 102, 1361.
- 6. P. Schuster, O. E. Polansky, and F. Wessely, Monatsh. Chem., 1964, 95, 57.
- 7. B. Eistert and F. Geiss, <u>Chem. Ber.</u>, 1961, **94**, 929.
- 8. Since 1,3-Dioxane-4,6-dione ring has the possibility of the hydrolysis or alcoholysis in protic solvents, we used acetonitrile as an aprotic solvent.
- 9. D. Swern, 'Organic Peroxides,' ed. by D. Swern, John Wiley & Sons, New York, Vol. 2, Chap. 5, 1971, pp. 355-533.
- G. B. Payne, P. H. Deming, and P. H. Williams, <u>J. Org. Chem.</u>, 1961, 26, 659;
 U. Sequin, <u>Tetrahedron Lett.</u>, 1979, 1833.

Received, 22nd June, 1990