EPOXIDATION OF 5-ALKYLIDENE AND 5-BENZYLIDENE SUBSTITUTED 1.3-DIOXANE-4.6-DIONE DERIVATIVES BY HYDROGEN PEROXIDE WITBOUT CATALYST

Takashi Tsuno and Kunio Sugiyama* Department of Industrial Chemistry, College of Industrial Technology, Nihon University, Narashino-shi, Chiba 275, Japan

Abstract - 5-Alkylidene and 5-benzylidene substituted 1,3-dioxane-4,6-dione derivatives readily reacted with hydrogen peroxide at room temperature without any catalyst to give the corresponding spiro- and polyspirocycllc compounds containing oxirane ring in good yields.

The epoxidation of α , β -unsaturated carbonyl compounds with hydrogen peroxide is one of very important and useful reactions in organic synthesis and has required careful pH control of reaction¹ and/or the presence of catalyst.² Catalysts for the epoxidation have been mainly investigated,² while there are very few report on α , β -unsaturated carbonyl compounds to be epoxidized with hydrogen peroxide in the absence of catalyst. we noted that 5-alkylidene and 5-benzylidene Meldrum's acids ($1a$, $1b$, $1d$, and $1q$) are very reactive electrophiles and susceptible to attack by some nucleophiles such as sodium methoxide, 3 amines, 4 and aryloxide ions⁵ to give the corresponding zwitterionic adducts. Therefore, these Meldrum's acids were expected to be oxidized under milder conditions with hydrogen peroxide alone and such epoxldation of these acids (la-g), **8-alkylidene-6,lO-dioxa-7,9** dioxospiro[4,5]decane (2a-d), and 3-alkylidene-1,5-dioxa-2,4-dioxospiro[5.5]undecane (3a-d) was tried to afford the corresponding epoxides in good yields. The starting compounds $1a-d$, $1f$, and $1g$ were obtained by the reaction of Meldrum's acid with the corresponding ketones or aldehydes according to a slightly modified procedure of the reported methods. $3a, 6$ Similarly, 1e, 2a-d, and 3a-d were easily synthesized by the condensation between the corresponding active methylene compounds⁷ and ketones or aldehydes.

A typical procedure of the epoxidation is as follows. Isobutylidene Meldrum's acid (la, 1.45 **g,** 7.3 mmol) was added to a solution of 35 % hydrogen peroxide

Dioxane-4,6-dione Derivatives with Hydrogen Peroxide in Acetonitrile^{a)}

a) All reactions were carried out at room temperature under an argon atmosphere. b) All epoxides **gave** satisfactory ir, 'H, and 13c nmr spectra, and elementary analyses. **c)** Melting points are uncorrected. d) Decomposed.

(3 ml) in acetonitrile (17 ml) with stirring at room temperature. The reaction was monitored by the disappearance of 1a with tlc (Silica gel, Merck, 60 F_{254} , hexane:acetone=8:2, v/v). After 10 min, to the reaction mixture was added 10 % sodium hydrogensulfite solution (20 ml) and extracted with dichloromethane (20 ml **x** 2). The organic layer was dried over anhydrous magnesium sulfate, and concentrated to give crude crystals. Recrystallization from ether/hexane gave the epoxide, 2-isopropyl-6,6-dimethyl-1,5,7-trioxa-4,8-dioxospiro[2.5]octane (4a, 1.19 g, 76 $\text{\$}$) mp 73-74 °C; ir (CHCl₃) 1740 and 1760 cm⁻¹; ¹H nmr (CDCl₃) δ =1.01(3H,

d, J.7.1 Hz), 1.20(3H, d, 5.7.1 Hz), 1.82(3H, **51,** 1.85(3H, **s),** 1.99(1H, d septet, J=9.3 and 7.1 Hz), and 3.43(1H, d, J=9.3 Hz); 13 C nmr (CDCl₃) 6=18.3(q), 19.9(q), $26.4(d), 27.6(q), 28.3(q), 55.4(s), 73.5(d), 105.9(s), 161.7(s), and 163.7(s);$ Anal. Found: C, 56.07 %; H, 6.71 %. Calcd for C₁₀H₁₄O₅: C, 56.07 %; H, 6.59 %. Similarly, the epoxidation of lb-g, 2a-d, and 3a-d was carried out and yields were shown as Table 1.

The epoxidation with hydrogen peroxide in acetonitrile is possible to proceed via peroxycarboximidic acid, 9^9 then, we have investigated the solvent effect on the epoxidation of la and lg by the use of several other solvents in order to clarify this question (Table 2). When methanol or t-butyl alcohol as solvent was employed, both of la and **lg** allowed rapidly to react with hydrogen peroxide. However, the epoxidation of two-phase system using benzene as solvent proceeded quite slowly, although these conditions have eventually completed oxidation. Therefore, it is suggested that the epoxidation of $1a-g$, $2a-d$, and $3a-d$ occurred directly with hydrogen peroxide.

	Solvent	Time	Yield/%
$\overline{\mathbf{a}}$	MeOH	10 min	62
	t-BuOH	10 min	88
	Benzene ^{b)}	22 h	85
д	MeOH	10 min	62
	t-BuOH	10 min	75
	Benzene ^{b)}	24 h	78

Table 2. Solvent Effect on Epoxidation of 1a and 1q with Hydrogen Peroxide^{a)}

a) All reactions were carried out in the presence of $1a$ or $1g$ (7 mmol) and 35 % hydrogen peroxide (3 ml) in solvent (17 ml). b) Two-phase system.

The epoxidation of usual olefins with hydrogen peroxide alone affords products of incomplete oxidation or no products. The epoxidation of α, β -unsaturated esters has been performed by using peracids^{9,10} or alkaline hydrogen peroxide.^{1a} Diethyl ethylidenemalonate, a compound analogous to 5-alkylidene substituted 1.3-dioxane-4,6-diones, has been epoxidized only with alkaline hydrogen peroxide.^{1a} However, the epoxidation of $1a-g$, $2a-d$, and $3a-d$ with hydrogen peroxide alone took place

completely and more reactively than that of ordinary olefins.

Thus, it is particularly interesting to note that the epoxidation of $1a-g$, $2a$ d, and 3a-d with hydrogen peroxide proceeds at room temperature, without the use of bufferring system and catalyst.

REFERENCES AND NOTES

- 1. a) G. B. Payne, J. Org. Chem., 1959, 24, 2048; b) G. B. Payne, J. Am. Chem. **RENCES AND NOTES**
a) G. B. Payne, <u>J. Org. Chem.</u>, 1959, 24, 2048; b) G. B. Payne, <u>J. Am. Chem.</u>
<u>Soc.</u>, 1958, 80, 6461; c) G. B. Payne, <u>ibid.</u>, 1959, 81, 4901; d) C. A. Bunton and G. J. Minkoff, **J,** Chem. Soc.. 1949, 665.
- 2. G. B. Payne and K. B. Williams, **J.** Ow. Chem., 1959, 24, 54; K. S. Kirshenbaum and K. B. Sharpless, ibid., 1985, 50, 1979; M. Miyashita, T. Suzuki, and A. Yoshikoshi, <u>Chemistry Lett.</u>, 1987, 285; T. Oguchi, Y. Sakata, N. Takeguchi,
K. Kaneda, Y. Ishii, and M. Ogawa, <u>ibid.</u>, 1989, 2053; Y. Ishii and M. Ogawa, Yuki Gosei Kagaku Kyoukaishi, 1989, 47, 889.
- 3. a) G. Swoboda, J. Swaboda, and F. Wessely, Monatsh. Chem., 1964, 95, 1283; b) P. Schuster, 0. E. Polansky, and F. Wessely, Tetrahedron, suppl. 8, part 2, 1966, 463; c) P. Schuster, <u>Österreichische Chemiker-Zeitung</u>, 1967, 68, 252; d) F. J. Kunz, P. Margaretha, and O. E. Polansky, <u>Chimia</u>, 1970, 24, 165.
- 4. C. F. Bernasconi and S. Fornarini, J. Am. Chem. Soc., 1980, 102, 5329.
- 5. C. F. Bernasconi and G. D. Leonarduzzi, J. Am. Chem. Soc., 1980, 102, 1361.
- 6. P. Schuster, 0. E. Polansky, and F. Wessely, Monatsh. Chem., 1964, 95, 5:.
- 7. B. Eistert and F. Geiss, Chem. **Ber.,** 1961, 94, 929.
- 8. Since 1,3-Dioxane-4,6-dione ring has the possibility of the hydrolysis or alcoholysis in protic solvents, we used acetonitrile as an aprotic solvent.
- 9. D. Swern, 'Organic Peroxides,' ed. by D. Swern, John Wiley & Sons, New York, Vol. 2, Chap. 5, 1971, pp. 355-533
- 10. G. B. Payne, P. H. Deming, and P. H. Williams, J. Org. Chem., 1961, 26, 659; U. Sequin, Tetrahedron Lett., 1979, 1833.

Received, 22nd June, 1990