SYNTHESIS OF (+)-TRANS-WHISKY LACTONE, (+)-TRANS-COGNAC LACTONE AND (+)-ELDANOLIDE

Takashi Ebata*, Katsuya Matsumoto, Hajime Yoshikoshia), Koshi Koseki, Hiroshi Kawakami, and Hajime Matsushita

Life Science Research Laboratory, Japan Tobacco Inc., 6-2,
Umegaoka, Midori-ku, Yokohama, Kanagawa 227, Japan

a) Tokyo Research Laboratory, Yuki Gosei Kogyo Co., Ltd., 3-37-1,
Sakashita, Itabashi-ku, Tokyo 174, Japan

<u>Abstract</u> — A new and useful synthesis of (+)-trans-whisky lactone (3), (+)-trans-cognac lactone (4) and (+)-eldanolide (5) starting from levoglucosenone (1) is described.

Levoglucosenone (1) 1 (1,6-anhydro-3,4-dideoxy- β -c-glycero-hex-3-enopyranos-2-ulose) is widely known as a pyrolytic product of cellulose. It is a very useful chiral source for synthesizing natural products 2 because of its highly functionalized structure, which contains one chiral center. We have recently reported an efficient method for the convenient preparation of (S)-5-Hydroxypenten-4-olide (2) from levoglucosenone (1) 3 by using the Baeyer-Villiger oxidation as a key step. (Scheme 1)

Scheme 1

In this paper, we describe a general method that permits easy access to 3,4-disubstituted γ -lactones, such as trans-whisky lactone (3) [(3S,4R)-3-methyl-4-octanolide], the key flavor of whisky and wine, 4 , 5 trans-cognac lactone (4) {(3S,4R)-3-methyl-4-nonanolide], the key flavor of cognac, 6 and the natural eldanolide (5) [(3S,4R)-3,7-dimethyl-6-octen-4-olide), the pheromone produced by the male Eldana saccharina (Wlk.), 7 in an enantioselective manner using the chirality of levoglucosenone (1).

Our synthesis of $\bf 3$, $\bf 4$ and $\bf 5$ was straightforward, as illustrated in Scheme 2. Treatment of levoglucosenone ($\bf 1$) with Me₂CuLi gave $\bf 6$ in 84.3 % yield $\{[\alpha]_D^{23} - 293^\circ (\text{Et}_2\text{O})\}$. It was shown to be 100 % diastereomerically pure when analyzed by glc and ^1H nmr. It was oxidized with AcOOH to give $\bf 7$ in 86.0 % yield. The corresponding tosylate ($\bf 8$) was treated with K₂CO₃ in MeOH to give epoxide ($\bf 9$) in 66.4 % yield from $\bf 7$. Finally, treatment of $\bf 9$ with n-Pr₂CuLi gave trans-whisky lactone ($\bf 3$) % in 76.2 % yield ($[\alpha]_D^{23} + 79.5^\circ$ (MeOH), lit.9b $[\alpha]_D^{20} + 72.8^\circ$ (MeOH)}. And similar treatment of $\bf 9$ with n-Bu₂CuLi gave trans-cognac lactone ($\bf 4$) 10 in 78.3 % yield ($[\alpha]_D^{23} + 79.5^\circ$ (CH₂Cl₂), lit.11 $[\alpha]_D^{15} + 48.3^\circ$ (CH₂Cl₂)). And further, eldanolide ($\bf 5$) 12 was also synthesized in a similar manner using Me₂C=CHMgBr and CuBr in 73.8 % yield { $[\alpha]_D^{23} + 57.8^\circ$ (EtOH), lit.13b $[\alpha]_D^{21} + 55.9^\circ$ (EtOH)}.

Scheme 2

In conclusion, we developed a new and useful synthesis of (+)-trans-whisky lactone (3), (+)-trans-cognac lactone (4) and (+)-eldanolide (5) starting from levoglucosenone (1).

REFERENCES

- 1. This compound is available from Yuki Gosei Kogyo Co., Ltd.
- a) M. Mori, T. Chuman, and K. Kato, <u>Carbohydr. Res.</u>, 1984, **129**, 73.
 b) M. Isobe, N. Fukami, and T. Goto, <u>Chemistry Lett.</u>, 1985, 71.
- 3. K. Koseki, T. Ebata, H. Kawakami, H. Matsushita, Y. Naoi, and K. Itoh, Heterocycles, 1990, 31, 423.
- 4. K. Otsuka, Y. Zenibayashi, M. Itoh, and A. Totsuka, Agric. Biol. Chem., 1974, 38, 485 and refs cited therein.
- 5. M. Masuda and K. Nishimura, Chemistry Lett., 1981, 1333.
- R. ter Heide, P. J. deValois, J. Visser, P. P. Jaegers, and R. Timmer, 'Analysis of Food and Beverages', ed. G. Charalambous, Academic Press, New York, 1978, p. 275.
- 7. G. Kunesch, P. Zagatti, J. Y. Lallemand, A. Debal, and J. P. Vigneron, Tetrahedron Lett., 1981, 22, 5271.
- 8. Physical data for our synthetic **3** are as follows; bp $123\sim125^{\circ}$ C/16 torr; np²³ 1.4402; ir (film) $v \text{ cm}^{-1}$ 2964, 2938, 1783, 1214, 1174; $^{1}\text{H-nmr}$ (CDCl₃, 300 MHz): δ 0.92 (3H, t, J=7.2 Hz), 1.14 (3H, d, J=6.4 Hz), 1.30~1.75 (6H, m), 2.12~2.31 (2H, m), 2.60~2.75 (1H, m), 4.01 (1H, dt, J=4.0 and 7.7 Hz).
- 9. Optically active trans-whisky lactone (3) has been prepared;
 - a) C. Gunther and A. Mosandl, Liebigs Ann. Chem., 1986, 2112
 - b) R. Bloch and L. Gilbert, J. Org. Chem., 1987, 52, 4603.
 - c) D. Hoppe and O. Zschage, Angew. Chem. Int. Ed. Engl., 1989, 28, 69.
 - d) M. Beckmann, H. Hildebrandt, and E. Winterfeldt, <u>Tetrahedron Asym.</u>, 1990, 1, 1335.
- 10. Physical data for our synthetic **4** are as follows; bp 101~103°C/6 torr; n_D^{23} 1.4431; ir (film) v_{cm}^{-1} 2962, 2936, 1779, 1212, 1172; $^1H_{-nmr}$ (CDCl3, 300 MHz): δ 0.90 (3H, t, J=6.8 Hz), 1.14 (3H, d, J=6.3 Hz), 1.21~1.75 (8H, m), 2.12~2.30 (2H, m), 2.60~2.75 (1H, m), 4.01 (1H, dt, J=4.0 and 7.7 Hz).
- 11. Only one synthesis of optically active trans-cognac lactone (4) has been reported; R. M. Ortuno, R. Merce, and J. Font, <u>Tetrahedron</u>, 1987, 43, 4497.

- 12. Physical data for our synthetic **5** are as follows; bp 115~117°C/21 torr; n_D^{23} 1.4606; ir (film) $V \, \text{cm}^{-1}$ 2972, 2920, 1783, 1214, 1195; $^1\text{H-nmr}$ (CDCl3, 300 MHz): δ 1.14 (3H, d, J=6.5 Hz), 1.64 (3H, s), 1.73 (3H, s), 2.10~2.50 (4H, m), 2.68 (1H, dd, J=7.5 and 16.6 Hz), 4.06 (1H, dd, J=6.5 and 12.2 Hz), 5.10~5.22 (1H, m).
- 13. Optically active eldanolide (5) has been prepared;
 - a) J. P. Vigneron, R. Meric, M. Larcheveque, A. Debal, G. Kunesch, P. Zagatti, and M. Gallois, <u>Tetrahedron Lett.</u>, 1982, 23, 5051.
 - b) T. Uematsu, T. Umemura, and K. Mori, Agric. Biol. Chem., 1983, 47, 597.
 - c) Y. Yokoyama and M. Yunokihara, Chemistry Lett., 1983, 1245.
 - d) K. Suzukì, T. Ohkuma, and G. Tsuchihashi, Tetrahedron Lett., 1985, 26, 861.
 - e) R. M. Ortuno, R. Merce, and J. Font, Tetrahedron, 1987, 43, 4497.

Received, 22nd June, 1990