PRACTICAL PREPARATION OF OPTICALLY ACTIVE O-BENZYLGLYCIDOL FROM OPTICALLY ACTIVE EPICHLOROHYDRIN

Seiichi Takano,* Yoshinori Sekiguchi, Masaki Setoh, Takehiko Yoshimitsu, Kohei Inomata, Michiyasu Takahashi, and Kunio Ogasawara Pharmaceutical Institute. Tohoku University, Aobayama, Sendai 980, Japan ra
utical Institute, Tohoku University, Aobayama, Sendai
nn
Tractical preparation of optically active *O*-benzyl-
has been developed starting from optically active

glycidol has been developed starting from optically active epichlorohydrin by employing either basic or acidic conditions in the key stage.

Optically active O -benzylglycidol^{1~3} (1) is an important key building block for the synthesis of a wide variety of optically active compounds such as natural products. 4 Although 1 can be most readily accessible from D-mannitol, it requires a little lengthy sequence of reactions. $1-3$ We report here a simple practical procedure for the preparation of optically active O -benzylglycidol (1) starting from optically active is an important key
active compounds su
ble from D-mannitol,
re a simple practical
glycidol (1) starting
 $\xrightarrow{\longrightarrow}$

Scheme 1

epichlorohydrin⁵ (2) by employing either basic (route \hat{a}) or acidic (route \hat{b}) conditions in the key stage. It has been confirmed that 2 is selectively cleft at the epoxy-end6 under both basic and acidic conditions in high selectivity which is concluded by optical rotation of the product (1) and comparison of optical purities between the starting

Scheme 2

material (2) (\sim 98% ee) and the product (1) (\sim 95% ee). Although both of the basic (route a^{\dagger})⁷ and the acidic (route b)⁸ procedures are based on the established methods for racemic production of 0-benzylglycidol where a large excess of racemic epichlorohydrin has been used, the present method is modified in order to avoid wasting of valuable chiral starting material.

Thus treatment of (R) -epichlorohydrin⁹ [(R) -2] with 0.9 molar equivalent of benzyl alcohol in 50% aqueous sodium hydroxide solution in the presence of phase transfer catalyst afforded (R) -O-benzylglycidol $[(R)$ -1] in one step in an acceptable yield $(-65%)$ with a minor loss $(1-2\%)$ of original chiral integrity (route a). On the same treatment the enantiomeric chloride⁹ $[(S)-2]$ gave the enantiomeric ether $[(S)-1]$ in a comparable yield with a comparable optical purity. These indicate that the reaction proceeds with initial epoxy-end cleavage followed by cyclization of the chlorohydroxide intermediate (3) under the conditions.6

On the other hand, treatment of a mixture of (R) -epichlorohydrin $[(R)-2]$ and 2.5 molar equivalents of benzyl alcohol with a catalytic amount of boron trifluoride at 50 **"C** allows smooth reaction at the epoxy-end to give the chlorohydrin intermediate (4) which without isolation is directly treated with aqueous sodium hydroxide in the same reaction flask to furnish an acceptable yield $(-75%)$ of $(R)-O$ -benzylglycidol $[(R)-O]$ 1] with a minor loss $(1-2\%)$ of original chiral integrity (route b). On the similar

treatment the (S) -chloride $[(S)-2]$ gives the enantiomeric ether $[(S)-1]$ in a comparable yield with a comparable optical purity.

Although a little racemization is found to he unavoidable under both basic and acidic conditions, the present procedure converting optically active epichlorohydrin (2) into optically active O -benzylglycidol (1) has of great practical value for the construction of a wide variety of optically active compounds.

EXPERIMENTAL SECTION

Optical rotations were measured with a JASCO-DIP-370 digital automatic polarimeter. Optical purity of epichlorohydrin was estimated by ¹H nmr spectra (500 MHz) using **(S)-2.2,2-trifluoro-I-(9-anthry1)ethanol** as shift reagent with a JEOL-JNM-GX 500 instrument. Optical purity of 0-benzylglycidol was estimated by hplc using a EYELA PLC-10 instrument equipped with a CHIRALCEL OD (DAICEL) column using a mixture of i-PrOH-hexane (1:20) as eluent. Mass spectra were recorded with a JEOL-JMS-AX500 instrument. Reactions were carried out under argon.

Preparation¹¹ of Optically Active O -Benzylglycidol (1) from Optically Active Epichlorohydrin (2):

$(R)-O$ -Benzylglycidol $[(R)-1]$:

(a) Basic conditions (route \underline{a}) —— To a stirred mixture of (R) -epichlorohydrin $[(R)-2]$: 2.0 g, 21.6 mmol], benzyl alcohol (2.12 g, 19.6 mmol), and tetrabutylammonium hydrogen sulfate $(290 \text{ mg}, 0.86 \text{ mmol})$ is added 50% (w/v) aqueous sodium hydroxide (10 ml) dropwise at $0 °C$ and the stirring is continued for 30 min at the same temperature and for 4 h at room temperature. The mixture is extracted with ether (4 x 25 ml) and the extract is washed with brine $(2 \times 10 \text{ ml})$, dried $(MgSO₄)$, and evaporated under reduced pressure. The residue is purified by chromatography on a silica gel column using a mixture of hexane-ether (6:1 v/v) as eluent to give pure $(R)-O$ benzylglycidol $[(R)-1]$ as a colorless oil; yield: 2.00 g (62%); bp 120-130 °C/0.6 Torr (Kugelrohr); α ₁ β ² +9.8±0.2° *(c 5.*13, MeOH) [95±0.5% ee by hplc]. Spectral data (ir, ¹H) nmr, and mass) are identical with those of an authentic material.

(b) Acidic conditions (route \underline{b}) —— To a stirred mixture of (R) -epichlorohydrin $[(R)-2]$: 10.0 g, 108.0 mmol] and benzyl alcohol (29.2 g, 270.0 mmol) is added boron trifluoride etherate (0.4 ml, 3.3 mmol) at room temperature and the mixture is further stirred at 50 $^{\circ}$ C for 18 h. After cooling to room temperature, to a stirred mixture is added sodium hydroxide (6.50 g, 162.0 mmol) in water (160 ml) and ether (80 ml) and the stirring is continued for 18 h at the same temperature. After separating the organic layer, the aqueous layer is extracted with ether $(3 \times 100 \text{ ml})$. The combined organic layers are washed with brine $(2 \times 30 \text{ ml})$, dried $(MgSO₄)$, and evaporated under reduced pressure. The residue is purified by chromatography on a silica gel column using a mixture of hexane-ether $(6:1 \text{ v/v})$ as eluent to give pure (R) -O-benzylglycidol $[(R)-1]$ as a colorless oil; yield: 13.2 **g** (75%); bp 120-130 °C/0.6 Torr (Kugelrohr); $\lbrack \alpha \rbrack_D^{28}$ +9.8±0.2° (c 4.90, MeOH) [95±0.5% ee by hplc]. Spectral data (ir, ¹H nmr, and mass) are identical with those of an authentic material.

 $(S)-O$ -Benzylglycidol $[(S)-1]$:

(a) Basic conditions (route \underline{a}) —— To a stirred mixture of (S) -epichlorohydrin $[(S)-2]$: 2.0 g, 21.6 mmoll, benzyl alcohol (2.12 g, 19.6 mmol), and tetrabutylammonium hydrogen sulfate (290 mg, 0.86 mmol) is added 50% (w/v) aqueous sodium hydroxide (10 ml) dropwise at 0 $^{\circ}$ C. After stirring for 30 min at 0 $^{\circ}$ C and for 4 h at room temperature, the mixture is treated quite similarly as for the enantiomer $[(R)-1]$ to give pure (S)-O-benzylglycidol [(S)-1] as a colorless oil; yield: 1.56 g (61%); α ₁₀33 -9.9+0.Z0 (c 5.00, MeOH) **[95t0.5%** ee by hplc]. (b) Acidic conditions (route **b**) **and** $(5.84 \text{ g}, 54.0 \text{ mm})$ is added boron trifluoride 2.00 g, 21.6 mmol) and benzyl alcohol $(5.84 \text{ g}, 54.0 \text{ mm})$ is added boron trifluoride

2.00 g, 21.6 mmol] and benzyl alcohol (5.84 g, 54.0 mmol) is added boron trifluoride etherate (0.08 ml, 0.66 mmol) at room temperature and the mixture is further stirred at 50 °C for 18 h. The mixture is treated quite similarly as for the enantiomer $[(R)-1]$ to give pure $(S)-O$ -benzylglycidol $[(S)-1]$ as a colorless oil; yield: 2.60 g (73%); bp 120-130 °C/0.6 Torr (Kugelrohr); [α]_D²⁸ -9.9±0.2° (c 5.04, MeOH) [96±0.5% ee by hplc]. Spectral date (ir, $\frac{1}{1}$ nmr, and mass) are identical with those of an authentic material.

ACKNOWLEDGMENT

We thank DAISO Co. Ltd., Osaka, Japan, for donation of a large quantity of (R) - and (S) epichlorohydrins

REFERENCES

- 1. B. T. Golding and P. V. Ioannou, Synthesis, **1977,** 423.
- 2. S. Takano, K. Seya, E. Goto, M. Hirama, and K. Ogasawara, Synthesis, **1983,** 116.
- 3. S. Takano, M. Akiyama, and K. Ogasawara, Synthesis, **1985,** 503.
- 4. A review on the utilization of chiral 0-benzylglycidol in natural product synthesis, see: **S.** Takano and K. Ogasawara, *J.* Syn. Org. Chem. Jpn., 1989, 47, 813.
- 5. Both **(R)-** and (S)-enantiomers are commercially produced by Daiso Co. Ltd., Osaka, Japan.
- 6. Cf. D. E. McClure, B. H. Arison, and J. J. Baldwin, *J.* Am. Chem. Soc., 1979, **101,** 3666.
- **7.** G. Mouzin, H. Cousse, J. Rieu, and A. Duflos, Synthesis, **1983,** 117.
- 8. V. Ulbrich and 0. DuRa, Chem. Prunysl., 1960, **10,** 549 (Chem. Abstr., 1951, 45, 5620); V. Ulbrich, J. Makes, and M. Jureek, Coil. Czech. Chem. Commun., 1964, 29, 1466.
- 9. Optical purity of both (R) and (S) -epichlorohydrins is estimated to be $\sim 98\%$ ee, respectively, by ¹H nmr (500 MHz) using $(S)-2,2,2$ -trifluoro-1- $(9-anthryl)$. ethanol¹⁰ as shift reagent.
- 10. Cf. G. R. Weisman, "Asymmetric Synthesis," Val. 1, Academic, New York, 1983, p. 153.
- 11. Each reaction is repeated four times.

Received, 25th July, 1990