REACTION OF PYRIDAZINE <u>N</u>-OXIDES WITH PYRIDYNES: FORMATION OF THE FIRST EXAMPLES OF PYRIDO-OXEPINS

Jyoji Kurita, Naoki Kakusawa, Shuji Yasuike, and Takashi Tsuchiya^{*} Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-11, Japan

<u>Abstract</u> — Reaction of pyridazine <u>N</u>-oxides (<u>3</u>) with pyridynes and quinolynes (<u>2</u>) gave the corresponding novel fully unsaturated pyrido-oxepins (<u>4-6</u>) and quino-oxepins (13-15) via the cycloadducts (11).

1-Benzoxepins have been prepared by several methods,^{1,2} However, fused 1-oxepins condensed with aromatic heterocyclic rings are unknown,³ although the synthesis of new seven-membered heterocyclic ring systems has recently been the object of extensive study.^{3,4} We report here the formation of the first examples of fully unsaturated pyrido-oxepins and quino-oxepins.⁵

In the course of the studies on 1,3-dipolar cycloaddition of azine <u>N</u>-imides and <u>N</u>-oxides, we have found that the reaction of pyridazine <u>N</u>-imides with benzyne gave the stable cycloadducts, whereas that of pyridazine <u>N</u>-oxides resulted in the formation of 1-benzoxepins via the initially formed unisolable cycloadducts.² This result prompted us to examine the reaction of pyridazine <u>N</u>-oxides with pyridynes (didehydropyridines) and quinolynes (didehydroquinolines). The pyridynes (<u>2a,b</u>) and quinolynes (<u>2c,d</u>) used were generated from the corresponding 1-aminotriazolopyridines (<u>1</u>) by oxidation with lead tetra-acetate, ⁶ Scheme 1.

Scheme 1

Pb(OAc).

Treatment of the pyridazine <u>N</u>-oxides (<u>3a-c</u>) with 3,4-pyridyne (<u>2a</u>)⁷ gave pyrido-[3,4-<u>b</u>]oxepins (<u>4a-c</u>) and pyrido[4,3-<u>b</u>]oxepins (<u>5a-c</u>) in 10-15% and 15-20% yields. Similarly, the reaction of the <u>N</u>-oxides (<u>3</u>) with 2,3-pyridyne (<u>2b</u>) afforded pyrido[2,3-<u>b</u>]oxepins (<u>6a-c</u>) in 20-30% yields, but no [3,2-<u>b</u>]-isomers (<u>7</u>).⁸ These pyrido-oxepins obtained were characterized by elemental and spectroscopic analyses and the results of some chemical studies. For example, in the ¹H-nmr spectra of unsubstituted compounds (<u>4a</u>, <u>5a</u>, and <u>6a</u>), the signals due to 3-H appeared at around § 5.5 and those due to other three oxepin ring protons lay in the olefinic range (\Im 6.0-6.5). Catalytic hydrogenation of the 2-phenyl compounds (<u>4c</u>) and (<u>5c</u>) resulted in ring opening to give the 3-hydroxypyridine derivative (<u>8</u>) and 4-pyridone derivative (<u>9</u>), respectively, Scheme 2.

In the case of the reaction of 3,6-dimethylpyridazine 1-oxide $(\underline{3b})$ with 2,3pyridyne $(\underline{2b})$, the rearrangement product $(\underline{10b})$ was also obtained in ca. 10% yield. We also observed that the reaction of 3-methyl- and 3-methoxypyridazine 1-oxides

Scheme 3

with benzyne gave the corresponding similar rearrangement products together with 1-benzoxepins. Therefore, the previously proposed mechanism for the reaction of pyridazine <u>N</u>-oxides with benzyne, involving diazo-keto intermediates derived from the initially formed cycloadducts by N-O bond fisson,² seems unlikely. Based on the above additional results, a possible mechanism for the reaction is shown in Scheme 3. The cycloadducts (<u>11</u>) initially formed may undergo N-O bond fission followed by competing 1,3- and 1,5-shift. The former shift predominates to give the pyrido-oxepins (<u>4-6</u>) as major products probably via the intermediates (<u>12</u>), and the latter affords the rearrangement products (<u>10</u>). The electron-donating methyl or methoxyl group may promote the 1,5-shift.

The regioselectivity for the initial 1,3-dipolar cycloaddition of the <u>N</u>-oxides with the pyridynes is analogous to that observed in the reaction of pyridynes with ammonia;⁹ 3,4-pyridyne gives both 3- and 4-aminopyridine, whereas only 2-aminopyridine is formed from 2,3-pyridyne.

Similarly, upon treatment with pyridazine <u>N</u>-oxides (<u>3a-c</u>), 3,4-quinolyne (<u>2c</u>) gave quino[3,4-<u>b</u>]oxepins (<u>13a-c</u>) and quino[4,3-<u>b</u>]oxepins (<u>14a-c</u>) in 20-25% and 8-12% yields, respectively, and 2,3-quinolyne (2d) afforded only quino[2,3-<u>b</u>]-oxepins (15a-c) in 20-30% yields, ¹⁰ Scheme 4.

Further application of the present results to other hetarynes such as didehydrodiazines and didehydroazoles is under investigation.

REFERENCES AND NOTES

 F. Sondheimer and A. Shani, J. Am. Chem. Soc., 1964, 86, 3168; E. Vogel, M. Biskup, W. Pretzer, and W. A. Böll, <u>Angew. Chem. Int. Ed. Engl.</u>, 1964, <u>3</u>, 642; E. E. Schweizer, M. S. El-Bakoush, K. K. Light, and K. H. Oberle, <u>J. Org. Chem</u>., 1968, <u>33</u>, 2591; H. Hofmann and H. Westernacher, <u>Chem. Ber</u>., 1969, <u>102</u>, 205; N. E. Brightwell and G. W. Griffin, <u>J. Chem. Soc.</u>, Chem. Commun., 1973, <u>37</u>.

- H. Igeta, H. Arai, H. Hasegawa, and T. Tsuchiya, <u>Chem. Pharm. Bull.</u>, 1975, <u>23</u>, 2791.
- D. R. Boyd, 'Comprehensive Heterocyclic Chemistry,' Vol. 7, eds. by A. R. Katritzky and C. W. Rees, Pergamon Press, Inc., Oxford, 1984, pp. 547-592.
- 4. T. Mukai, T. Kumagai, and Y. Yamashita, <u>Heterocycles</u>, 1981, <u>15</u>, 1569; R. K. Smalley, 'Comprehensive Heterocyclic Chemistry,' Vol. 7, eds. by A. R. Katritzky and C. W. Rees, pergamon Press, Inc., Oxford, 1984, pp. 491-546; J. T. Sharp, <u>ibid</u>., pp. 593-651; J. Kurita, K. Iwata, and T. Tsuchiya, <u>Chem. Pharm. Bull</u>., 1987, <u>35</u>, 3166; H. Sashida, A. Fujii, and T. Tsuchiya, <u>ibid</u>., 1987, <u>35</u>, 3182; H. Sawanishi and T. Tsuchiya, <u>J. Chem. Soc., Chem. Commun</u>., 1990, 722; and references cited therein.
- 5. Although these compounds are usually named as oxepinopyridines and oxepinoquinolines, we used in the present paper the pyrido-oxepin name in connection with benzoxepins in order to emphasize the new seven-membered ring systems.
- 6. G. W. J. Fleet and I. Fleming, J. Chem. Soc. (C), 1969, 1758.
- 7. A solution of Pb(OAc)₄ (1.1 mol eq.) in CH_2Cl_2 was added dropwise over a 10-15 min period to a suspension of <u>3</u> (3-4 mol eq.), <u>2</u>, (0.5-1.0 g), and CaO (large excess) in CH_2Cl_2 with stirring at 0 °C. The isolated yields of the oxepins were calculated from the starting tetrazolopyridines (<u>1</u>).
- 8. Satisfactory elemental analyses and spectral data were obtained for all new pyrido-oxepins reported; <u>4a</u>: viscous oil; ¹H-nmr (CDCl₃) S : 5.49 (1H, dd, J= 6 and 6 Hz, 3-H), 6.20 (1H, dd, J=6 and 11 Hz, 4-H), 6.25 (1H, d, J=6 Hz, 2-H), 6.55 (1H, d, J=11 Hz, 5-H), 6.95 (1H, d, J=5 Hz, 6-H), 8.19 (1H, s, 9-H), 8.29 (1H, d, J=7 Hz, 7-H); <u>4b</u>: viscous oil; <u>4c</u>: mp 94-96 °C; <u>5a</u>: viscous oil; ¹H-nmr S : 5.42 (1H, dd, J=6 and 6 Hz, 3-H), 6.03 (1H, dd, J=6 and 11 Hz, 4-H), 6.07 (1H, d, J=6 Hz, 2-H), 6.54 (1H, d, J=11 Hz, 5-H), 6.75 (1H, d, J=5.5 Hz, 9-H), 8.27 (1H, s, 6-H), 8.43 (1H, d, J=5.5 Hz, 8-H); <u>5b</u>: viscous oil; <u>5c</u>: mp 54-55 °C; <u>6a</u>: viscous oil; ¹H-nmr S : 5.55 (1H, dd, J=5.5 Hz, 3-H), 6.08 (1H, dd, J=5.5 and 11 Hz, 4-H), 6.29 (1H, d, J=5.5 Hz, 2-H), 6.51 (1H, d, J=11 Hz, 5-H), 7.07 (1H, dd, J=4.5 and 7.5 Hz, 7-H), 7.46 (1H, dd, J=2 and 7.5 Hz, 6-H), 8.19 (1H, dd, J=2 and 4.5 Hz, 8-H); <u>6b</u>: mp 50-51 °C; <u>6c</u>: mp ca. 20 °C.
- 9. W. Adams, A. Grimison, and R. Hoffmann, <u>J. Am. Chem. Soc</u>., 1969, <u>91</u>, 2590;
 M. G. Reinecke, <u>Tetrahedron</u>, 1982, <u>38</u>, 427.
- 10. <u>13a</u>: mp 77-78 °C; <u>13b</u>: mp 63-65 °C; <u>13c</u>: mp 121-122 °C; <u>14a</u>: mp 101-102 °C; <u>14b</u>: mp 82-83 °C; <u>14c</u>: mp 135-136 °C; <u>15a</u>: mp 83-84 °C; <u>15b</u>: mp 96-97 °C; <u>15c</u>: mp 146-147 °C.

Received, 4th October, 1990