THE CHEMISTRY OF 4<u>H</u>-1,3-DITHIINS* Fillmore Freeman Department of Chemistry University of California, Irvine Irvine, CA 92717, U.S.A.

Abstract....1,2-Dithiins, 1,3-dithiins, 1,4-dithiins, and their derivatives continue to attract considerable attention owing to their bioactivity, to their unique structural features, to their potential superconducting properties, and to their chemical activity. This review describes the preparation, the chemistry, and the biological properties of 4H-1,3-dithiin and its derivatives.

CONTENTS

- 1. Introduction
- 2. 4<u>H</u>-1,3-Dithiins
 - 2.1 Structure
 - 2.2 Preparation
 - 2.3 Reactions
- 3. 4H-Benzo-1, 3-dithiins
- 4. Naphtho [1,8-de]-1,3-dithiins
- 5. 1,3-Dithiino[5,4-b]indoles
- 6. [1,3]Dithiino[5,4-c]pyrazoles
- 7. 5H-[1,3]Dithiino[4,5-c]pyridazines
- 8. 4<u>H</u>-1, 3-Dithiino [5, 4-d] pyrimidines
- 9. 1,2-Dithiolo[4,3-d]-1,3-dithiins
- 10. Other Derivatives of 4H-1,3-Dithiin
- 11. Bioactivity

1. INTRODUCTION

1,2-Dithiin (o-dithiin, 1,2-dithia-3,5-cyclohexadiene, 1),¹⁻³ 4H-1,3dithiin (2),² 1,4-dithiin (p-dithiin, 1,4-dithia-2,5-cyclohexadiene, 3),³⁻⁵ and their derivatives are found in natural products and are of considerable biological, experimental, and theoretical interest.⁶⁻²³ 1,2-Dithiin (1), 3,4-dihydro-1,2-dithiin (4),¹ and 3,6-dihydro-1,2dithiin (5),¹ and their derivatives are of particular current interest owing to their antiviral properties and to their effectiveness against the acquired immunodeficiency virus (HIV, AIDS).^{24,25}

The major compounds in the young leaves of Aspilia mossambicesis and Aspilia plurisetta are 3-(5-hexene-1,3-diynyl)-6-(1-propynyl)-1,2dithiin, thiarubrine A, 6) and 3-(1,3-pentynyl)-6-(but-1-yn-3-ene)-1,2dithiin, thiarubrine B, 7).²⁶ Thiarubrine A (6), thiarubrine B (7), and the corresponding thiophene derivatives 8 and 9 are present in the roots of Chaenactis douglasii and Eriophyllum lanatum.²⁷⁻²⁹

*This paper is dedicated to Professor Sir Derek H.R. Barton on the occasion of his 70th birthday.

Several red-colored compounds [thiarubrine A (6), thiarubrine B (7), (E)-3-(3-buten-1-ynyl)-6-(3-penten-1-ynyl)-1,2-dithiin (10), (E)-3(3,5hexadien-1-ynyl)-6-(1-propynyl)-1,2-dithiin (11)], and the corresponding thiophene derivatives (8, 9, 12, 13) have been isolated from several compositae.³⁰⁻⁴² The occurrence and structure of thiarubrine B (7) in Eriophyllum caespitosum have been discussed.^{37,43-45}

13

Thiarubrine A (6) and/or thiarubrine B (7) are also found in roots of Ambrosia artemisiifolia,³¹ in the aerial parts of Pegolettia senegalensis,³² in Wedelia hookeriana,³³ in Schkuhria multiflora,³⁴ in Verbesina occidentalis,³⁵ in roots and overground parts of other Verbesina species,³⁶ and in the roots of Schkuhria seneciodes.⁴⁵ 3-(3-Buten-1-ynyl)-6-(3-penten-1-ynyl)-1,2-dithiin (10) is found in Picradeniopsis woodhousei,³⁸ in the Lasthenia species,³⁹ in Oyedaea boliviana,⁴⁰ and in Verbesina.⁴¹ 3-(3,5-Hexadien-1-ynyl)-6-(1propynyl)-1,2-dithiin (11) has been found in the roots and aerial parts of Melampodium divaricatum.⁴²

3-Ethenyl-3,4-dihydro-1,2-dithiin (14) and 2-ethenyl-4H-1,3-dithiin (15) are found in the flavor components of cooked asparagus⁴⁶ and 1,2dithiin (14) is a component of garlic.⁴⁷⁻⁵³ Volatile sulfur containing compounds which are enzymically produced from caucas (A. victorialis) have been identified.⁵³ The occurrence of 1-propenyl containing disulfides and 2-methyl-2-pentenal, one of the breakdown products of propanethial S-oxide in caucas, which is one of the garlic like Allium species, is chemotaxonomically interesting. 1,2-Dithiin (14) and 4H-1,3-dithiin (15), which have antithrombotic activity, were isolated from caucas and identified by ir, nmr (2D ¹H-¹H COSY), and mass spectrometry.⁵³

H=CH-CH=CH₂ 14 15

The chemistry of 1,2-dithiins (1),¹ 1,4-dithiins (3),⁴ 3,4-dihydro-1,2dithiins (4),¹ and 3,6-dihydro-1,2-dithiins (5)¹ has been recently reviewed. This review, which covers the literature to 1988, will describe the chemistry of 4H-1,3-dithiins (2),² 4H-1,3-benzodithiins (16),⁵⁴ naphtho[1,8-de]-1,3-dithiins (17),⁵⁵ 1,3-dithiino[5,4-b]indoles (18),^{56,57} [1,3]dithiino[5,4-c]pyrazoles (19),^{57,59} 5H[1,3]dithiino[4,5c]pyridazines (20),⁵⁸ 4H-1,3-dithiino[5,4-d]pyrimidines (21),^{57,59} 1,2dithiolo[4,3-d]-1,3-dithiin (22),⁶⁰ and other derivatives of 4H-1,3dithiin (2).

2. 4<u>H</u>-1,3-DITHIINS

2.1 Structure

Preliminary *ab initio* molecular orbital calculations show that the nonplanar conformational isomers of $4\underline{H}$ -1,3-dithiin (2), 3,4-dihydro-1,2-dithiin (4), and 3,6-dihydro-1,2-dithiin (5) are more stable than the corresponding planar isomers (Tables 1, 2, 3)^{1,6,7} A comparison of Tables 1 and 2 shows that 3,4-dihydro-1,2-dithiin (4) is more stable than $4\underline{H}$ -1,3-dithiin (2).

H H		conformation		
H_{4} H_{4		planar	nonplanar	
		Cs	C_1	
4 SF	2 """H2"	-5	·	
total energy (au)		-945.39667	-945.414241	
at RHF/3-21G ^(*) energy difference		-943.39007	-745.414241	
(kJ mol ⁻¹)		41.34		
total energy (au) at MP2/6-31G*//RHF/3-21G ^(*)				
energy diff				
(kJ mo	·	1.820	1.812	
rS1C2	Å		1.812	
rC2S3	Å	1.829 1.828	1.816	
rS3C4	Å	1.501	1.512	
rC4C5	Å	1.301	1.312	
IC5C6	Å	1.515	1.756	
rC6S1	Å	1.079	1.080	
rC2H2	Å	1.079	1.080	
IC2H2'	Å Å	1.083	1.084	
rC4H4 rC4H4'	Å	1.083	1.084	
rC5H5	Å	1.075	1.075	
rC6H6	Å	1.074	1.074	
<s1c2s3< td=""><td>A</td><td>122.110</td><td>114.090</td></s1c2s3<>	A	122.110	114.090	
<c2s3c4< td=""><td></td><td>109.910</td><td>97.230</td></c2s3c4<>		109.910	97.230	
<\$3C4C5		120.190	114.740	
<c4c5c6< td=""><td></td><td>129.520</td><td>127.730</td></c4c5c6<>		129.520	127.730	
<c5c6s1< td=""><td></td><td>131.280</td><td>129.180</td></c5c6s1<>		131.280	129.180	
<c6s1c2< td=""><td>106.990</td><td>101.190</td></c6s1c2<>		106.990	101.190	
<h2c2h2< td=""><td>2'</td><td>108.580</td><td>108.430</td></h2c2h2<>	2'	108.580	108.430	
<h4c4h4< td=""><td>4'</td><td>107.400</td><td>107.220</td></h4c4h4<>	4'	107.400	107.220	
<h5c5c6< td=""><td><u>,</u></td><td>117.480</td><td>117.680</td></h5c5c6<>	<u>,</u>	117.480	117.680	
<h6c6c5< td=""><td>5</td><td>118.980</td><td>119.340</td></h6c6c5<>	5	118.980	119.340	
<\$1C2\$3	C4	0	65.890	
<c2\$3c4c5< td=""><td>0</td><td>52.450</td></c2\$3c4c5<>		0	52.450	
<\$3C4C5C6		0	24.240	
<c4c5c6s1< td=""><td>0</td><td>1.040</td></c4c5c6s1<>		0	1.040	
<c5c6s1c2< td=""><td>0</td><td>9.660</td></c5c6s1c2<>		0	9.660	
<u><c6s1c2s3< u=""></c6s1c2s3<></u>		0	46.580	

Table 1. Ab Initio Molecular Orbital Calculations for 4H-1,3-Dithiin (2)

H_{4} H_{4		conformation	
		planar Cs	nonplanar C ₁
H ₃ I	H ₃ '		
total energy (au) at RHF/3-21G ^(*) energy difference (kJ mol ⁻¹) at MP2/6-31G*//RHF/3-21G ^(*) energy difference (kJ mol ⁻¹)		-945.39329	-945.4175
		63.60	
rs1s2	Á	2.082	2.055
rs2C3	Å	1.840	1.822
rC3C4	Å	1.556	1.538
rC4C5	Å	1.505	1.515
rC5C6	Å	1.313	1.318
rC6S1	Å	1.744	1.766
r _{C3H3}	Å	1.079	1.082
r _{C3H3'}	Å	1.079	1.081
r _{C4H4}	Å	1.085	1.085
rC4H4'	Å	1.085	1.087
rc5H5	Å	1.075	1.075
rC6H6	Å	1.075	1.073
<s1c2s3< td=""><td>109.470</td><td>97.440</td></s1c2s3<>		109.470	97.440
<s2c3c4< td=""><td>122.450</td><td>111.130</td></s2c3c4<>		122.450	111.130
<c3c4c5< td=""><td>121.050</td><td>115.250</td></c3c4c5<>		121.050	115.250
<c4c5c6< td=""><td></td><td>130.320</td><td>128.210</td></c4c5c6<>		130.320	128.210
<c5c6s1< td=""><td></td><td>130.770</td><td>127.450</td></c5c6s1<>		130.770	127.450
<c6\$1\$2< td=""><td>105.940</td><td>100.740</td></c6\$1\$2<>		105.940	100.740
<h3c3h3'< td=""><td>107.910</td><td>108.710</td></h3c3h3'<>		107.910	108.710
<h4c4h4'< td=""><td>106.030</td><td>107.040</td></h4c4h4'<>		106.030	107.040
<h5c5c6< td=""><td>116.750</td><td>117.300</td></h5c5c6<>		116.750	117.300
<h6c6c5< td=""><td>119.410</td><td>120.120</td></h6c6c5<>		119.410	120.120
<\$1\$2C3C4		0	69.350
<s2c3c4c5< td=""><td>0</td><td>52.330</td></s2c3c4c5<>		0	52.330
<c3c4c5c6< td=""><td>0</td><td>12.100</td></c3c4c5c6<>		0	12.100
<c4c5c6s1< td=""><td>0</td><td>0.220</td></c4c5c6s1<>		0	0.220
<c5c6s1s2< td=""><td>0</td><td>23.200</td></c5c6s1s2<>		0	23.200
<u><c6s1s2c3< u=""></c6s1s2c3<></u>		0	50.050

Table 2. Ab Initio Molecular Orbital Calculations for 3,4-Dihydro-1,2-dithiin (4)

H ₁ , H ^a		conformation		
H S►''S	/···· _{H^b}	planar C _{2v}	nonplanar C2	
total energy (au) 3-21G [*] energy difference between C_{2v} and C_2 (kJ mol ⁻¹)		-945.39189	-945.41604	
energy diffe	(au) MP2 6-31G* rence between 2 (kJ mol ⁻¹)		-950.75680	
rs-s	Å	2.097	2.049	
r _{C-S}	Å	1.826	1.818	
rc-c	Å	1.503	1.515	
rc=c	Å	1.312	1.317	
гс-н ^а	Å	1.083	1.083	
rс-н ^b	Å	***	1.084	
r _{=C-H}	Å	1.076	1.075	
<h-c-h< td=""><td></td><td>107.610</td><td>107.920</td></h-c-h<>		107.610	107.920	
<h-c≈c< td=""><td></td><td>117.450</td><td>118.270</td></h-c≈c<>		117.450	118.270	
<c-s-s< td=""><td></td><td>108.830</td><td>97.890</td></c-s-s<>		108.830	97.890	
<c-c=c< td=""><td></td><td>130.780</td><td>127.790</td></c-c=c<>		130.780	127.790	
<c-c-s< td=""><td></td><td>120.390</td><td>114.140</td></c-c-s<>		120.390	114.140	
dihedral angle CSSC		0	63.390	
dihedral angle CCSS		0	52.570	
dihedral angle CCCS		0	21.120	
CCCC		0	0.710	
twist angle ^a		0	36.860	

Table 3. Ab Initio Molecular Orbital Calculations for 3,4-Dihydro-1,2-dithiin (4)

a) The twist angle between the S-S bond and the plane involving the four carbon atoms.

2.2 Preparation

4H-1,3-Dithiin (2) has been reported as a product from the photoreduction of benzophenone by 1,3-dithiane.^{61a}

Thiocarbonyl compounds, with the carbon-sulfur double bond serving as the 2π dienophile component, have been employed in Diels-Alder reactions ([4 + 2] cycloadditions) to prepare thiopyranyl systems.^{61b} However, dithioesters, thioaldehydes, and thioketones may participate as the diene partners of Diels-Alder reactions in which the thiocarbonyl group comprises a component of the 4π diene system.⁶¹⁻⁶⁸

Dially disulfide decomposed quantitatively at 660 °K in the gas phase to give an equimolar mixture of propene and 2-propenethial.^{61c} On cooltrapping, 2-propenethial dimerized and the Diels-Adler adduct, predominantly the kinetic product 2-ethenyl-4H-1,3-dithiin (15), was isolated together with 3-ethenyl-3,4-dihydro-1,2-dithiin (14).^{61c,61d,62} Treating propenal with hydrogen sulfide and ethyl orthoformate in the presence of zinc chloride gave 1,2-dithiin 14 and 1,3-dithiin 15.⁶³ S-3-Propenyl 2-propenethiosulfinate (allicin), which undergoes β -elimination to afford 2-propenesulfinic acid and 2-propenethial, is a precursor of 1,2-dithiin (14) and 1,3-dithiin (15) (eq. 1).⁴⁷ The formation of 1,2-dithiin (14) in the aromatic components of cooked asparagus is assumed to involve reaction of hydrogen sulfide with 2-propenethial.⁶³

Aliphatic α,β -unsaturated thicketones are unstable at 20 to 25 °C and exist in the dimeric 4H-1,3-dithiin structure (24) or the 1,2-dithiin structure (25) (eq. 2).⁶⁴⁻⁶⁸ Flash vacuum pyrolysis (FVP) preparation of α,β -unsaturated thicketones also led to regiospecific Diels-Alder dimerization with 4π and 2π thiccarbonyl participation (eq. 3). Molecular orbital calculations of the cyclodimerization have been reported.^{64b}

(3)

í.

There is a need for careful investigations in order to accurately interpret the preferred kinetic mode and regioselectivity of the Diels-Alder dimerization reactions of α , β -unsaturated thioaldehydes and thioketones owing to the reversible nature of the cycloadditions and to the potential participation of the products in subsequent rearrangements. Substituted aryl ethanones react with hydrochloric acid and hydrogen sulfide to give 2,4-dimethyl-2,4,6-triaryl-4H-1,3-dithiins (26) (eq. 4).⁶⁹⁻⁷² 1-(4-Methoxyphenyl)-1-propanone reacts similarly.⁷³

2,2-Dibenzyl-4,6-diphenyl-4<u>H</u>-1,3-dithiin (29) was isolated from the reaction of 1,3-diphenylpropane-2,2-dithiol (27) with benzalacetophenone (chalcone, 28) in ethanolic hydrogen chloride (eq. 5,6).⁷⁴⁻⁷⁶ Other examples of 4<u>H</u>-1,3-dithiins from α , β -unsaturated carbonyl compounds are shown in equations 6 and 7.⁷¹

- 711 ---

Attempts to prepare β -mercaptocinnamaldehyde from β -chlorocinnamaldehyde (33) and sodium sulfide led to a dimer (bicyclo[3.3.1]-5,7-diphenyl-3-hydroxy-2-oxa-6,9-dithia-7-nonene, 34).⁷⁷

A series of 4H-1,3-dithiins (35) has been prepared by reaction of an alkynyl ester and an aromatic aldehyde with hydrogen sulfide in the presence of boron trifluoride.⁷⁸

Scheme I shows the first general synthesis of $4\underline{H}$ -1,3-dithiins (38).^{60,79}

Scheme I

Ethyl 3-oxobutanoate reacts with hydrogen chloride and hydrogen sulfide to give products **39a**, **39b**, and 2,6-dimethyl-2-ethoxycarbonylmethyl-4oxo-1,3-dithiin (40).⁸⁰ A mechanism for the formation of **40** via the dimerization of **39** and subsequent elimination of ethanol was proposed.⁸⁰

Diphenylthioketene $(41)^{81}$ gives [2 + 2] cycloaddition products with electron rich unsaturated systems such as enamines and ketene acetals (eq. 9, 10).^{82,83} A mechanism via a zwitterionic intermediate is suggested by the formation of 2:1 cycloadducts.

46c $R = -(CH_2)_5 -$

Dicyanomethane (malononitrile)⁸⁴⁻⁸⁸ reacts with gem-dithiols in the presence of potassium hydroxide to give 4H-1,3-dithiins (46).89 Benzylidenemalononitrile and cyclohexylidenemalononitrile gave analogous 4H-

The 2,4-bis(methylene)-1,3-dithietane (47) reacts with 1-(N,N-diethylamino)propyne (48) to yield 49.90 The reaction of spiro derivative 50 with 48 to give $51\ \text{may}$ proceed via a cyclopropenium cation. 106

47

48

The substituted 4H-1,3-dithiin 53 is prepared from salt 52.91

Bromination of β , γ -unsaturated dithiocarbamates (54) leads to the quantitative formation of the corresponding 2-dialkylamino-4-(α -bromoalkyl)-1,3-dithioanylium bromides (55) via regiospecific (S-5) participation by the dithiocarbamate function.⁹² Thermal transformation of 55 into 2-dialkylamino-4-alkyl-1,3-dithiolium salts (56) occurs in good yields.⁹³ The dithiolium salts (56) an important class of synthetic intermediates⁹⁴ for the preparation of tetrathiofuvalene derivatives which possess interesting electroconductivity properties.⁹⁵ This new synthetic route to 4-alkyl-1,3-dithiolium salts is more advantageous than other methods^{96,97} owing to its operational simplicity and to the accessibility of starting materials.

Pyrolysis of 2-dialkylamino-4-bromomethyl-4-methyl-1,3-dithioanylium bromides (55, R = R₁ = CH₃; R = CH₃; R = CH₃, R₁ = C₂H₅) gives the sixmembered 2-alkyl-imino-5-methyl-1,3-dithia-4-cyclohexenes (2-alkylimino-5-methyl-1,3-dithiins, 57).⁹⁸ This novel ring transformation may be the first example of a ring expansion of 1,3-dithiolane derivatives into a 1,3-dithiin system, although ring expansions of 1,3-dithiolane derivatives such as 58 into dihydro-1,4-dithiin systems (59) is well precedented.⁹⁹⁻¹⁰³ A crucial step in the synthesis of the antibiotic holomycin (61) is the ring contraction of a 1,3-dithiin (60) to a 1,2dithiole (eq. 18).^{104,105}

-717 -

In dipolar aprotic solvents, 2-oxocyclopentanedithiocarboxylic acid
(62) is converted into 6,7-dihydro-2-(2-oxocyclopentylidene)cyclopenta[d][1,3] dithiin-4(5H)-thione 63 or into its positional isomer.¹⁰⁶

Thermolysis (185 °C) of dimethyl 2,4-diphenyl-1,3-dithiin-5,6-dicarboxylate (35d) affords isomeric dimethyl 3,4-dihydro-3,4-diphenyl-1,2dithiin-5,6-dicarboxylate (64).⁷⁸ Desulfurization of 64 with Raney nickel gave diester (65). The mechanism of this unusual rearrangement might involve fission of a C-S bond with formation of intermediate allylic (and benzylic) diradicals (Scheme II). The structures of the 1,3-dithiins 35 were further supported by their spectral properties and oxidative rearrangement to the dithiolium salts (66).⁷⁸

2.3 REACTIONS

The unexplored chemistry of 4H-1, 3-dithiin (2) and its derivatives remains a fertile area for future study.

The isomerization of 2-ethenyl-4<u>H</u>-1,3-dithiin (15) to 3-ethenyl-3,4dihydro-1,2-dithiin (14) has been observed (eq. 1). $^{61-63}$

4H-1,3-Dithiins (38, Scheme I) react with dibromine in ethanoic acid to give aldehydes (68, 55-60%) and 4-phenyl-1,2-dithiolium bromide (71, Scheme III).⁷⁹ Sulfuryl chloride reacts similarly with 38.

-719-

Some of the versatile chemical reactivity of the labile 4H-1, 3-dithiin 53 (eq. 13) is shown in Scheme IV.⁹¹ It is seen that a 1,2dithiolethione (72), an isothiazole (73), and open chain products (74, 75) are formed.

3. 4<u>H-BENZO-1, 3-DITHIINS</u>

Although the parent compound $(4\underline{H}-benzo-1,3-dithiin, 16)$ is not known, 2-aryl-4H-1,3-benzodithiins (77) and 2,2-dimethyl-4<u>H</u>-1,3-benzodithiin (78) have been prepared from 1-mercapto-2-thiomethylbenzene (76).^{54,79} Permanganate ion oxidizes the 1,3-dithiin (78) to the corresponding disulfone(79).

Photolysis of the 1,3-dithiin (78) gave the rearranged product (80) (15%) in addition to compound (81) (4%) and disulfide (82) (3%).¹⁰⁷ The absence of compound (83) suggests that initial carbon-sulfur bond cleavage occurs only in the direction to give the more stable thiyl radical 84a.

3,1-Benzoxathian-4-ones (85), when heated with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson reagent, 86) or with $P_{4}S_{10}$ gave one or more of the following products: 3,1benzoxathian-4-thione (87), 1,3-benzothian-4-one (88), 1,3-benzodithian-4-thione (89), and 3H-1,2-benzodithiole-3-thione (90).¹⁰⁸ Lithium aluminum hydride reduces thione (90) to dithiol (76).⁷³

85a R = H85b $R = CCl_3$ 85c $R = C_6H_5$ 85d R = 2-nitrophenyl

86

Compound **89** (R = Ph) reacted with phenylhydrazine or hydroxylamine to give known compounds **91** and **92**, respectively.¹⁰⁸ 4-Phenylhydrazono-2-phenyl-1,3-benzodithian (**93**) was isolated as a byproduct from the phenylhydrazine reaction. The $3\underline{H}$ -1,2-benzodithiol-3-imines (eg. **91a**) are in equilibrium (Dimroth rearrangement) with 1,2-benzisothiazole-3(2\underline{H})-thiones (eg. **91b**).¹⁰⁸

90

Another report¹⁰⁹ describes the reaction of 3,1-benzoxathian-4-ones (85, $R = (CH_2)_{10}CH_3$, CH_3 , Ph) with Lawesson reagent (86) or with P₄S₁₀ to give a mixture of 87, 89, and 1,2-benzodithiolethione (90). Compound 89 (X $= X^1 = S; R = Ph$) reacts with primary amines and hydrazines to give 94 (X = S; X¹ = NR¹; R¹ = alkyl, aryl). The reactions of 89 with Ph₂CN₂,

4. NAPHTHO[1,8-de]-1,3-DITHIINS

Naphtho[1,8-de]-1,3-dithiin (17)^{55,110} was prepared in 26% yield by treatment of 1,8-dimercaptonaphthalene (naphtho[1,8-cd]-1,2-dithiole, 97) with sodium hydride and diiodomethane at 22-24 °C in tetrahydro-furan.

The reaction of dithiol (97) with propanone afforded the 1,3-dithiin (98).¹¹¹ 2-Phenylnaphtho[1,8-de]-1,3-dithiin (99) was prepared from the reaction of the dithiol (97) and phenylmethanal.¹¹² Naphtho[1,8-de]-2isopropylidene-1,3-dithiin (100) was prepared (95%) from the Wadsworth-Emmons reaction of diethyl [naphtho[1,8-de]-1,3-diin-2-yl]phosphonate (101) and propanone.⁵⁵ Compound 101 was prepared from naphtho[1,8-de]-1,3-dithiin-2-thione (102) (eq. 22).⁵⁵

98 $R = R^1 = CH_3$ **99** $R = H, R^1 = C_6H_5$

 $P(OC_2H_5)_3$

100

101

102

The tetrahedral intermediate (107) in the intramolecular acyl transfer reaction of mono-S-acylated 1,8-naphthalenedithiol (106) was found to be sufficiently stable to allow isolation or direct characterization by spectroscopy.¹¹³ Compound 107 (106) dissolves in 96% sulfuric acid to give an intense blush-violet solution showing a single methyl signal at δ 2.75 (ppm from external TMS) and a multiplet at δ 7.0 - 8.0. Dilution of the solution with cold water gave a trace of 107 (106) and compound 108. A carbenium ion intermediate was proposed.¹¹³

Refluxing 1,2-dithaacenenaphthene (96) and bis(toluenesulfonyl)diazomethane with copper acetylacetonate in benzene gave the insertion product (109) (88%).¹¹⁴ The pyrolysis of 109 or 110 at 148 °C gave carbonyl compound (111). Similar reactions were observed with 111 and diphenyldiazomethane in the presence of copper salts. The fact that diphenyl disulfide did not react with these carbenes implied that the five membered ring disulfide was more reactive to electrophilic reagents than ordinary sulfides.¹¹⁴

The discovery of tetrathiafulvalene (TTF, **112**) forming charge-transfer salts with low-dimensionally metallic properties has generated considerable interest in other electron donors which exhibit similar conductivity.55 Binaphtho[1,8-<u>de</u>]-1,3-dithiin-2-ylidene (**113**), which belongs to the same tetrathiaethylene class, but differs structurally from TTF (**112**) in the fused heterocyclic member, was prepared and its donor character was examined by cyclic voltammetry.^{55,110}

112

The cyclic voltammetry of 113 exhibited a reversible redox wave, whose half-wave oxidation potential was situated at 1.14 V vs. a Ag/AgCl reference electrode in cyanobenzene (0.1 M (C₄H₉)₄NClO₄, Pt electrode, 100 mV·s⁻¹ scan rate).⁵⁵ In contrast, the cyclic voltammetry of 17 and 105 showed irreversible oxidations with somewhat higher peak potentials. The easier oxidation of 113 and the greater stability of the resulting radical cation may be attributed to the extended conjugation of π electrons through the central olefin.⁵⁵ Although cyclic voltammetry indicated that symmetrical 2,2'binaphtho[1,8-de]-1,3-dithiinylidene (113) and its selenium analog were poor donors, unsymmetrical 2-(1,3-dithio-2-ylidene)naphtho[1,8-de]-1,3dithiin (114) and 2-(4H-thiopyran-4-ylidine)naphtho[1,8-de]1,3-dithiin (115) possess considerable donor abilities.¹¹¹ These compounds (114, 115) are capable of forming crystalline charge transfer complexes with strong acceptors as TCNQ, TCNQF4, and DDQ, which are semiconducting.⁵⁵

Nonplanar 2,2'-spirobinaphtho[1,8-<u>de</u>]-1,3-dithiin (**111**) has been prepared from the dithiol (**97**) and tetramethyl orthothiocarbonate (**116**).¹¹¹ The He(I) PE spectra of **98** and **117** have been measured.¹¹¹

116

117

The He(I) photoelectron spectra of naphtho[1,8-de]-1,3-dithiin (17) has also been measured.¹¹⁵ Oxidation of 17 gives the radical cation. The PES ionization energies and the esr coupling in the radical cation were satisfactorily reproduced by a molecular state parameterized HMO model.¹¹⁵

5. 1,3-DITHIINO[5,4-b]INDOLES

The 4,5-dihydro derivative 18 was obtained from 1,3-dithiane-5phenylhydrazone (118).^{56,57}

6. [1,3]DITHIINO[5,4-c]PYRAZOLES

19

The hydrazones of 2,7-dihydro-1,3-dithiino[5,4-c]-pyrazol-3(3aH)-ones were prepared from ethyl 5-oxo-1,3-dithiane-4-carboxylates (119).^{57,59}

The acetamide derivative of [1,3]dithiino[5,4-c]pyrazole (19) and 2,7dihydro-5-phenyl[1,3]dithiino[5,4-c]pyrazole-(3aH)-one were prepared and tested as sensitive silver halide photothermographic materials for producing dye images.¹¹⁶

7. 5H-[1,3]DITHIINO[4,5-c]PYRIDAZINE

Reaction of 121 (R = CPh₂OH; Z = O,S) with P_4S_{10} gave 122 (R = CPh₂SH; Z = S) which undergoes cyclocondensation with dimethoxymethane to give 3,4,5,5-tetraphenyl-5H-[1,3]dithiino[4,5-c]pyridazine (123, 66%),⁵⁸ which is a representative of a new ring system (1,3-dithiano-[4,5c]pyridazine).¹¹⁷

8. 4H-1, 3-DITHIINO [5, 4-d] PYRIMIDINES

6-Mercapto-4<u>H</u>-1,3-dithiino[5,4-d]pyrimidin-8-ol (125) was prepared (26%) from ethyl 5-oxo-1,3-dithiane-4-carboxylate (124) and thiourea.⁵⁹ The 6-amino derivative (126) was prepared similarly from compound 124 and with guanidinium thiocyanate. Condensation of the methyl ester of 124 gave the 6,8-dihydroxy compound.⁵⁷

9. 1,2-DITHIOLO[4,3-d]-1,3-DITHIIN

Treatment of 2-methyl-1,3-dithia-4-carbethoxycyclohexan-5-one (127) with P_4S_{10} , S, and CS_2 gave 5-methyl-1,2-dithiolo[4,3-d]-1,3-dithiin-(7H)-thione (128) which appears to be the only reported member of this family.⁶⁰

10. OTHER DERIVATIVES OF 4H-1,3-DITHIINS

4,5-Diphenyl-1,2-dithiole-3-thione (1,2-trithione, 129) reacts with 2,3-diphenylcyclopropenethione (130) to give thieno[3,2-b]thiophene (131) and tetraphenylthieno[3,2-c]-1,2-dithiin (132).¹¹⁸

1,2-Trithiones (129, 133) react with 2,3-diarylcyclopropenones (130, 134) to give the corresponding thieno[3,2-b]furans (135), 1,2-dithiole-3-ones (136), and 4H-1,3-dithiin 137a and/or 137b. A mechanism for formation of 137a and 137b is shown in Scheme V.¹¹⁸

129 $R^1 = R^2 = C_6H_5$ 133a $R^1 = C_6H_5$; $R^2 = CH_3$ 133b $R^1 = R^2 = CH_3$ 133c $R^1 - R^2 = -(CH_2)_4$ -133d $R^1 - R^2 = -(CH=CH)_2$ -133e $R^1 = CH_3$; $R^2 = C_6H_5$

130 $R^3 = C_6H_5$ 134a $R^3 = 4$ -ClC₆H₄ 134b $R^3 = 4$ -CH₃C₆H₄ 134c $R^3 = CH_3, C_6H_5$

....

The 1,4-dipole (139) reacts with thicketene (138) to give the cycloadduct (140).^{119,120}

2-(Arylmethylene)tetralin-1-thiones (142) and thiochalcones (144), which were generated by thermolysis of their respective dimers (141 and 143), undergo cycloaddition reactions with various dienophiles to give a wide variety of products.^{64,121}

141a Ar = C_6H_5 141b Ar = 4-CH₃OC₆H₄ 141c Ar = 4-ClC₆H₄ 142

(33)

143a Ar = C_6H_5 143b Ar = 4-CH₃OC₆H₄ 143c Ar = 4-ClC₆H₄

Treatment of the thione (142) with 2,3-diphenyl-2-propene-1-thione (130) in refluxing benzene (1 h) gave 1:1 adducts (56-63%) for which the regioisomeric structures (145) (5',6'-dihydro-2,3,4'-triarylspiro(2cy-clopropene-1,2'-[4H]-naphthol[1,2-d][1,3]dithiin]) and 146 are reason-able.¹²³ Structure 145 was preferred owing to the extrusion of a phenylmethanethial molecule in the mass fragmentation pattern. Similarly the reaction of 130 and 143 gave the 6'-aryl-2,3,4'triphenylspiro[2-cyclopropene-1,2'-[4H][1,3]dithiins (147, 62-88%).¹²¹

11. BIOACTIVITY

3-Ethenyl-3,4-dihydro-1,2-dithiin (11) and 2-ethenyl-4<u>H</u>-1,3-dithiin (12) show antithrombotic activity.⁵³

Although the garlic constituents (E/Z) ajoene and dially disulfide strongly inhibited prostaglandin synthease and 5-lipoxygenase, which are involved in prostaglandin and leukotriene biosynthesis, respectively, 3ethenyl-3,4-dihydro-1,2-dithiin (11) and 2-ethenyl-4H-1,3-dithiin (12) did not inhibit the enzymes to any appreciable extent.¹²² 1,3-Dithiacyclohexenyl (thiono) (thiolo) phosphoric (phosphonic) acid esters (148, X = S, R = OC_2H_5 , SC_3H_7 , C_2H_5 , Ph; X = O, R = OC_2H_5) have found applications as insecticides.¹²³ Compound 148 (X = S, R = OC_2H_5) at 5 ppm gave 100% kill of *Porbia antiqua* larvae in soil.

The cephalosporin derivatives (150, R = 5-methyl-1,3,4-thiadiazol-2-yl, l-methyl-5-tetrazolyl) were prepared by the reaction of 7-aminocephalosporanic acid with 149, followed by reaction with 5-methyl-2-thioxo1,3,4-thiadiazoline or 1-methyl-5-thioxotetrazoline. Compounds 150 are useful as bactericides, e.g. at 0.1-0.5 μ g/cm³ in vitro against Staphylococcus aureus Smith.¹²⁴

Other cephalosporin derivatives (151, R = H, $CHR^{1}O_{2}CR^{2}$; $R^{1} = H$, C_{1-4} alkyl; $R^{2} = C_{1-4}$ alkyl, cyclohexyl) and their salts were prepared for use as bacteriocides.^{125,126}

References

- F. Freeman, D.S.H.L. Kim, and E. Rodriquez, Sulfur Reports, 1989,
 9, 207.
- U. Eisner and T. Krishnamurthy, Int. J. Sulfur Chem., 1972, 7B, 101.
- 3. C.M. Buess, Mech. React. Sulfur Cpds., 1968, 3, 15.
- 4. K. Kobayashi, C.L. Gajurel, Sulfur Reports, 1986, 7, 123.
- 5. W.E. Parham, 'Org. Sulfur Cpds.', Vol. 1, ed. by N. Kharasch, Pergamon Press, New York, 1961, p. 248.
- F. Freeman, D.H.S.L. Kim, C. Lee, and W.J. Hehre, unpublished data from work in progress.
- F. Freeman, C. Lee, and W.J. Hehre, unpublished data from work in progress.
- 8. D.S. Sappenfield, and M. Kreevoy, Tetrahedron, 1963, 19, 157.
- W. Schroth, M. Hassfeld, and A. Zschunke, Z. Chem., 1970, 10, 296.
- 10. W. Schroth, R. Borsdorf, R. Herzschuh, and J. Seidler, Z. Chem., 1970, 10, 147.
- S. Saebo, L. Radom, and G.L.D. Ritchie, J. Mol. Struct., 1984, 108, 59.
- J. Kao, C. Eyermann, E. Southwick, and D. Leister, J. Am. Chem. Soc., 1985, 107, 5323.
- B.A. Hess, Jr. and L.J. Schaad, J. Am. Chem. Soc., 1973, 95, 3907.
- 14. V. Galasso, J. Mol. Struct., 1981, 85, 159.

- 15. M. Kreevoy, J. Am. Chem. Soc., 1958, 80, 5543.
- 16. N.K. Ray and P.T. Narashimhan, J. Mol. Struct., 1968, 1, 489.
- K. Hayakawa, N. Mibu, E. Osawa, and K. Kanematsu, J. Am. Chem. Soc., 1982, 104, 7136.
- 18. W.C. Herndon and C. Parkanyi, Tetrahedron, 1978, 34, 3419.
- 19. N.K. DasGupta and F.W. Birss, Tetrahedron, 1980, 36, 2711.
- 20. S. Inagaki and Y. Hirabyashi, J. Am. Chem. Soc., 1977, 99, 7418.
- R. Borsdorf, H.J. Hofmann, H.-J. Koehler, M. Scholz, and J. Fabian, Tetrahedron, 1970, 26, 3227.
- 22. J. Fabian and H. Hartmann, Z. Chem., 1978, 18, 145.
- G. Geiseler and J. Sawistowsky, Z. Phys. Chem. (Liepzig), 1973,
 253, 333.
- 24. F. Freeman, D.S.H.L. Kim, and E. Rodriguez, unpublished data from work in progress.
- 25a. K. Steliou, private communication.
- 25b. K. Steliou, Y. Gareau, G. Milot, and P. Salama, XIII International Symposium on the Organic Chemistry of Sulfur, 7-12 August 1988, Odense, Denmark, p. 13.
- E. Rodriguez, M. Aregullin, T., Nishida, S. Uehara, R. Wrangham,
 Z. Abramowski, A. Finlayson, and G.H.N. Towers, *Experientia*, 1985,
 41, 419.
- R.A. Norton, A.J. Finlayson, and G.H.N. Towers, Phytochem. 1985,
 24, 356.
- E.G. Cosio, R.A. Norton, E. Towers, A.J. Finlayson, E. Rodriguez, and G.H.N. Towers, J. Plant. Physiol., 1986, 124, 155.

- 29. E.G. Cosio, G.H.N. Towers, and J. McPherson, J. Plant. Physiol., 1987, 129, 1.
- F. Bohlmann, T. Burkhardt, and C. Zdero, Naturally Occurring Acetylenes, Academic Press, London, 1973.
- N.H. Fischer and L. Quijano, ACS Symp. Ser., 1985, 268, 133;
 Chem. Abstr., 1985, 102, 128809.
- 32. F. Bohlmann, J. Jakupovic, and A. Schuster, Phytochem., 1983, 22, 1637.
- 33. F. Bohlmann, C. Zdero, R.M. King, and H. Robinson, Phytochem., 1982, 21, 2329.
- F. Bohlmann, J. Jakupovic, H. Robinson, and R.M. King, Phytochem., 1980, 19, 881.
- F. Bohlmann, A.A. Natu, and P.K. Mahanta, Phytochem., 1978, 17, 483.
- 36. F. Bohlmann and M. Lonitz, Chem. Ber., 1978, 111, 254.
- 37. F. Bohlmann and C. Zdero, The Chemistry of Heterocyclic Compounds: Thiophene and Its Derivatives, ed. by S. Gronowitz, Wiley, New York, 1985, 44, 261.
- 38. F. Bohlmann, C. Zdero, and M. Grenz, Phytochem., 1976, 15, 1309.
- 39. F. Bohlmann and C. Zdero, Phytochem., 1978, 17, 2302.
- 40. F. Bohlmann and C. Zdero, Phytochem., 1979, 18, 492.
- F. Bohlmann, M. Grenz, R.K. Gupta, A.K. Dhar, M. Ahmed, R.M. King, and H. Robinson, *Phytochem.*, 1980, 19, 2391.
- F. Bohlmann and Le Van Ngo, Phytochem., 1977, 16, 1765; Chem.
 Abstr., 1977, 88, 101545.

- 43. J.T. Mortensen, J.S. Sørensen, and N.A. Sørensen, Acta Chem. Scand., 1964, 18, 2392.
- 44. F. Bohlmann and K.M. Kleine, Chem. Ber., 1965, 98, 3081.
- 45. F. Bohlmann and C. Zdero, Phytochem., 1977, 16, 780.
- 46. R. Tressl, D. Bahri, M. Holzer, and T. Kossa, J. Agric. Food Chem., 1977, 25, 459.
- E. Block, S. Ahmad, J.L. Catalfamo, M.K. Jain, and R. Apitz-Castro, J. Am. Chem. Soc., 1986, 108, 7045.
- 48. M.H. Brodnitz, J.V. Pascale, and L. Van Derslice, J. Agric. Food Chem., 1971, 19, 273.
- 49. M.S. Legendre, H.P. Dupuy, E.T. Rayner, and W.H. Schuller, J. Am. Oil Chem. Soc., 1980, 57, 361.
- B. Tokarska and K. Karwowski, Nahrung, 1983, 27, 443; Chem.
 Abstr., 1983, 99, 69118.
- 51. M. G.B. Zoghbi, L.S. Ramos, J.G.S. Maia, M.L. Da Silva, and A.I.R. Luz, J. Agric. Food Chem., 1984, 32, 1009; Chem. Abstr., 1984, 101, 126818.
- M. Voight and E. Wolf, Dtsch. Apoth. Ztg., 1986, 126, 591; Chem.
 Abstr., 1986, 104, 193276.
- H. Nishimura, C.H. Wijaya, and J. Mizutani, J. Agric. Food Chem.,
 1988, 36, 563; Chem Abstr., 1988, 108, 203507.
- 54. A Lüttringhaus and K. Hagele, Angew. Chem., 1955, 67, 304.
- 55. K. Yui, Y. Aso, T. Otsubo, and F. Ogura, Bull. Chem. Soc. Jpn., 1988, **61**, 953.
- 56. A. Martani, Ann. Chim. (Rome), 1959, 49, 1844; Chem. Abstr., 1947, 41, 952.

- 57. A. Martani, Ann. Chim. (Rome), 1959, 49, 1844; Chem. Abstr., 1960, 54, 19689.
- 58. N.A. Shams, E.I. Enayat, A.A. Ebtisam, and S.A. El-Abbady, J. Prakt. Chem., 1987, 329, 271; Chem. Abstr., 1988, 108, 56021.
- 59. E.G. Howard, Jr. and R.V. Lindsey, Jr., J. Am. Chem. Soc., 1960, 82, 158.
- A. Lüttringhaus and H. Prinzbach, Liebigs Ann. Chem., 1959, 624,
 79.
- 61a. G. Vermeersch, J. Marko, N. Febray-Garot, S. Caplain, A. Couture, and A. Lablache-Combier, Tetrahedron, 1978, 34, 2453.
- 61b. D.L. Boger and S.N. Weinreb, 'Hetero Diels-Alder Methodology in Organic Synthesis', Academic Press, New York, 1987, p. 214.
- 61c. H. Bock, S. Mohamand, T. Hirabayashi, and A. Semkov, J. Am. Chem. Soc., 1982, 104, 312.
- 61d. H. Bock, S. Mohamand, T. Hirabayashi, and A. Semkov, Chem. Ber., 1982, 115, 1339.
- E. Vedejs, T.H. Eberlein, and D.L. Varie, J. Am. Chem. Soc., 1982,
 104, 1445.
- 63. P. Breslin, J. Heterocycl. Chem., 1983, 20, 1753.
- 64a. T. Karakasa, S. Sadayoshi, and S. Motoki, Bull. Chem. Soc. Jpn., 1986, **59**, 335.
- 64b. T. Karaskasa, Nippon Shika Daigaku Kiyo, Ippan Kyoiku-kei, 1985,
 14, 103; Chem. Abstr., 1987, 107, 153669.
- H.G. Giles, R.A. Marty, and P. de Mayo, J. Chem. Soc., Chem. Commun., 1974, 409.

- 66. H.G. Giles, R.A. Marty, and P. de Mayo, Can. J. Chem., 1976, 54, 537.
- P. Breslin, D. Lagain, and J. Vialle, Tetrahedron Lett., 1979, 2677.
- P. Breslin, D. Lagain, J. Vialle, and C. Minot, Tetrahedron, 1981,
 37, 3839.
- 69. E. Baumann and F. Fromm, Chem. Ber., 1895, 28, 895.
- 70. E. Campaigne, J. Am. Chem. Soc., 1944, 66, 684.
- E. Campaigne, W.B. Reid, Jr., and J.D. Pera, J. Org. Chem., 1959,
 24, 1229.
- 72. D.J. Pasto and M.P. Serve, J. Org. Chem., 1962, 27, 4665.
- 73. W.H. Linnell and V.R. Sharma, Quart. J. Pharm. Pharmacol., 1939,
 12, 263; Chem. Abstr., 1939, 33, 8596.
- 74. E. Campaigne and B.E. Edwards, J. Org. Chem., 1962, 27, 3760.
- 75. E. Campaigne and B.E. Edwards, J. Org. Chem., 1962, 27, 4488.
- 76. C. Demuynck, M. Prudhomme, and A. Thuillier, Bull. Soc. Chim. Fr., 1966, 6, 1970.
- 77. M. Pulst, M. Weissenfels, E. Kleinpeter, and L. Beyer, Tetrahedron, 1975, **31**, 3107.
- 78. U. Eisner and T. Krishnamurthy, Tetrahedron, 1971, 27, 5753.
- 79. A. Lüttringhaus, M. Mohr, and N. Englehard, Liebigs Ann. Chem., 1963, 661, 84.
- 80. F. Duus and S.O. Lawesson, Arkiv Kemi, 1968, 29 127.
- 81. E. Schaumann, Tetrahedron, 1988, 44, 1827.
- G. Schmerse, Ph.D. Thesis, University of Hamburg, West Germany, 1983.

- 83. C. Heibl, Ph.D. Thesis, University of Hamburg, West Germany, 1985.
- 84. A. J. Fatiadi, Synthesis, 1978, 165, 241.
- 85. F. Freeman, Chem. Rev., 1969, 69, 591.
- 86. F. Freeman, Chem. Rev., 1980, 80, 329.
- 87. F. Freeman, Synthesis, 1981, 925.
- 88. F. Freeman, Ed., The Chemistry of Malononitrile, in preparation.
- 89. J. Jentzsch and R. Mayer, J. Prakt. Chem., 1962, 18, 211; Chem. Abstr., 1964, 60, 1583.
- 90. R. Gompper and U. Heinemann, Synthesis, 1982, 227.
- 91. K. Gewald, Chem. Ber., 1968, 101, 383.
- 92. K. Hiratani, T. Nakai, and M. Okawara, Chem. Lett., 1974, 1041.
- 93. T. Nakai, K. Hiratani, and M. Okawara, Bull. Chem. Soc. Jpn., 1976, **49**, 827.
- 94. Y. Ueno, A. Nakayama, and M. Okawara, Synthesis, 1975, 277.
- 95. F. Wudl, D. Wobschall, and E.J. Hufnagel, J. Am. Chem. Soc., 1972, 94, 670.
- 96. K. Hiratani, H. Shiono, and M. Okawara, Chem. Lett., 1973, 867.
- 97. E. Campaigne and N.W. Jacobsen, J. Org. Chem., 1964, 29, 1703.
- 98. K. Hiratani, T. Nakai, and M. Okawara, Bull. Chem. Soc. Jpn., 1976, 49, 2339.
- 99. J.L. Massingill, M.G. Reinecke, and J.E. Hodgkins, J. Org. Chem., 1970, 35, 823.
- 100. G. Karmas, J. Org. Chem., 1967, 32, 3147.
- 101. M. Tomoeda, M. Ishizaki, H. Kobayashi, S. Kanamoto, T. Koga, M. Inuzaka, and T. Furuta, Chem. Pharm. Bull., 1964, 12, 383.

- 102. M. Tomoeda, M. Ishizaki, H. Kobayashi, S. Kanamoto, T. Koga, M. Inuzaka, and T. Furuta, *Tetrahedron*, 1965, **21**, 733.
- 103. L.F. Fieser, C. Yuan, and T. Goto, J. Am. Chem. Soc., 1960, 82, 1996.
- 104. J.E. Ellis, J.H. Fried, I.T. Harrison, E. Rapp, and C.H. Ross, J. Org. Chem., 1977, 42, 2891.
- 105. Y. Kishi, T. Fukuyama, and S. Nakatsuka, J. Am. Chem. Soc., 1973, 95, 6490.
- 106. T. Takeshima, N. Fukada, T. Ishii, and M. Muraoka, J. Chem. Soc., Perkin Trans. I, 1976, 1706.
- 107. R.E. Kohrman and G.A. Berchtold, J. Org. Chem., 1971, 36, 3971.
- 108. A.A. El-Barbay, K. Clausen, and S.-O. Lawesson, Tetrahedron, 1980, 36, 3309.
- 109. A.A. El-Barbay, H.A. Hammouda, and M. El-Borai, Indian J. Chem., Sect. B, 1984, 23B, 770; Chem. Abstr., 1985, 102, 6342.
- 110. K. Yui, Y. Aso, T. Otsubo, and F. Ogura, Chem. Lett., 1986, 551.
- 111. R. Gleiter and J. Uschumann, J. Org. Chem., 1986, 51, 370.
- 112. W.B. Price and S. Smiles, J. Chem. Soc., 1928, 2372.
- 113. M. Takagi, R. Ishihara, and T. Matsuda, Bull. Chem. Soc. Jpn., 1977, **50**, 2193.
- 114. S. Tamagaki and S. Oae, Bull. Chem. Soc. Jpn., 1972, 45, 960.
- 115. H. Bock, G. Brahler, D. Dauplaise, and J. Meinwald, Chem. Ber. 1981, 114, 2622.
- 116. B.A. Clark, C. Holstead, and J.M. Simons, Brit. UK Pat. Appl. GB 2,136,980 (1984); Chem. Abstr. 1985, 102, P103656.

- 117. It appears that there are no reports of 2H-[1,3]dithiino{4,5c]pyridazine and its derivatives.
- 118. H. Behringer and E. Meinetsberger, Liebigs Ann. Chem., 1982, 315.
- 119. R. Gompper and W. Elser, Angew Chem. Int. Ed. Engl., 1967, 6, 366.
- 120. R. Gompper, Angew. Chem. Int. Ed. Engl., 1969, 8, 312.
- 121. T. Karakasa, S. Takeda, T. Saito, and S. Motoki, Bull. Chem. Soc. Jpn., 1986, 59, 3279.
- 122. H. Wagner, M. Wierer, and B. Fesler, Planta Med., 1987, 53, 305; Chem. Abstr. 1987, 107, 89878.
- 123. H.J. Riebel and B. Homeyer, Ger. Offen. 2,545,028 (1977); Chem. Abstr. 1977, 87, P53322.
- 124. C. Berger, D. Farge, and C. Moutonnier, Ger. Offen. 2,702,025 (1977); Chem. Abstr., 1977, 87, P135372.
- 125. C. Berger, D. Dominique, D. Farge, C. Moutonnier, and G. Wolfe, Ger. Offen. 2,825,426 1978; Chem. Abstr., 1979, 91, P57033.
- 126. C. Berger, D. Dominque, D. Farge, C. Moutonnier, and G. Wolf, Ger. Offen. 2,825,426 (1978); Chem. Abstr., 1979, 90, P168616.

Received, 24th January, 1989