THALLIUM SELECTIVE 6-METHYLPYRIMIDINE-2,4(1H,3H)-DIONE BASED PODANDS

Subodh Kumar, Rummi Saini, and Harjit Singh Department of Chemistry, Guru Nanak Dev University, Amritsar - 143 005, India

<u>Abstract</u> - Sequential reactions of dihalides and amino alcohols with 6-methyl-1,3-oxazine-2,4(3 $\underline{\text{H}}$)-diones provide title podands. <u>8a</u> selectively extracts and transports Tl^+ picrate over Li^+ , Na^+ , K^+ and NH^+_4 picrates. Compounds ($\underline{4}$), ($\underline{6}$), and ($\underline{8}$) are effective ionophores.

The significance of pyrimidine-2,4(1 \underline{H} ,3 \underline{H})-dione towards complexation (\underline{H}^+) displayed remarkably in DNA and RNA strands remains more or less untapped in case of synthetic ionophores. Consequently we have designed podands ($\underline{1}$) possessing (1) a carbon chain between N-3 of two pyrimidinediones and (ii) additional heteroatom bearing chains at their N-1. CPK models of (1) (n = 1 and 2) depict an overlapping of two C-2 carbonyl oxygens of pyrimidinedione moieties, which would inhibit cavity induced ligation and in podand ($\underline{1}$) (n = 3) two oxygens

8a m = 1; 8b m = 2

of pyrimidinediones are reasonably apart but it has relatively restricted flexibility for attaining a desired pseudocavity. However, podands (1) (n = 4, 5,6), in their CPK models, display considerable flexibility and could form adjustable pseudocavities with four hetero atoms. The incorporation of 2,6-dimethylene-1-methoxy-4-methylaryl group between two N-3 of two pyrimidine-diones(8) leads to a cavitand type structure (CPK model) with an additional ligating site. Thus, we have initially synthesized podands (4-6) and (8) and investigated their extraction and transport characters towards picrates of Li⁺, Na⁺, Tl⁺ and NH₄. The podand (8a) transports thallium(I) picrate nearly 25,14,10 and 8.5 times than K⁺, Na⁺ and NH₄ picrates respectively.

6-Methyl-1,3-oxazine-2,4(3 $\underline{\text{M}}$)-dione with 1,4-dibromobutane⁵ under solid-liquid phase transfer catalytic (PTC) conditions (CH₃CN-K₂CO₃-TEBA) gave two compounds. The lower R_f component (50%), mp 157°C, M⁺ m/z 308, ¹H-nmr § 1.50-1.87(m, 4H, CH₂CH₂), 2.17(s, 6H, 2XCH₃), 3.88(t, J = 6.0 Hz, 4H, 2XNCH₂), 5.67(s, 2H, 2X pyrimidine H), could be assigned the structure, 3,3'-(1,4-butanediyl)bis(6-methyl-1,3-oxazine-2,4(3 $\underline{\text{M}}$)-dione) (2a). The higher R_f component (5%), mp 68°C

M⁺ m/z 263, 261(1:1) was found to be 3<u>a</u>. Similarly, 6-methyl-1,3-oxazine-2,4-(3H)-dione with 1,5-dibromopentane, 1,6-dibromohexane and 2,6-bis(bromomethyl)-1-methoxy-4-methylbenzene gave $2\underline{b}(31\%)$, mp 139° C; $2\underline{c}$ (40%), mp 145° C, Lit., 2b 154-155°C; and 7(40%), mp 250° C, respectively. $2\underline{a}$ with 2-aminoethanol and 3-aminopropanol-1 gave $4\underline{a}$ (33%), mp 220° C, and $4\underline{b}$ (46%), 187° C, respectively. Similarly, $2\underline{b}$, $2\underline{c}$ and 7 on heating with 2-aminoethanol and 3-aminopropanol-1 gave $5\underline{a}(39\%)$, mp 134° C; $5\underline{b}(50\%)$, mp 100° C; $6\underline{a}(36\%)$, mp $194-195^{\circ}$ C, Lit., 2b $207-208^{\circ}$ C; $6\underline{b}(21\%)$, mp 165° C; $8\underline{a}(19\%)$, mp 105° C, and $8\underline{b}(15\%)$, mp 147° C, respectively. 6

Podands $|\underline{4}(\underline{a},\underline{b})|$ and $\underline{6}(\underline{a},\underline{b})|$ with even number carbon bridge between two pyrimidinones show different trends in extraction experiments as compared with $5(\underline{a},\underline{b})$.

Table Extraction $(x10^3)$ ratio of metal picrate over podand in organic layer) and transport $(x10^8 \text{ mol}/24 \text{ h})$ (in parenthesis) rates of podands $(\underline{4}-\underline{6} \text{ and } \underline{8})$:

Poda	nd Li ⁺	Na ⁺	к+	T1+	NH4	Selectivity Ratios			
					7	T1 ⁺ /K ⁺	Tl ⁺ /Na ⁺ T	1 ⁺ /NH ⁺ ₄	Tl ⁺ /Li ⁺
4a	_ (7.5)	4.09 (14)	9.38 (50.5)		4.36 (109)	1.66	3.81	3.58	-
4b	(50.2)	3.09 (15.5)	5.08 (-)*	4.70 (27.1)		0.93	1.52 (1.75)		(0.54)
5a	_ (_) *	1.54 (-)*		0.95 (13.9)		0.68	0.62	0.49 (1.52)	
5b	_ (~) *	4.41 (-)*		4.32 (10.1)			0.98	1.01 (0.59)	
6a	(26.1)	9.00 (46.0)	11.0 (20.1)	14.0 (35.1)			1.56 (0.76)	1.19 (1.08)	(1.34)
6b	 (49.1)	8.3 (52.3)		11.4 (50.8)		0.95	1.39 (0.97)	_	(1.03)
8a	(20.9)	2.4 (15.5)	2.7 (8.7)	8.4 (221)		3.05 (25.4)			
d8	_ (42.3)	5.5 (54.1)				1.15 (2.31)	1.09 (1.93)		(2.47)
*Not	transpor	ted							

Podands ($\underline{4a}$) and ($\underline{6a}$) with hydroxyethyl chain at N-1 extract metal picrates better than $\underline{4b}$ and $\underline{6b}$ possessing hydroxypropyl chain. But, $\underline{5a}$ extracts metal picrates poorly than $\underline{5b}$. Further, podands ($\underline{4}$) and ($\underline{6}$) show selectivity towards

K⁺ than Na⁺ but <u>5a</u> and <u>5b</u> selectively extracts Na⁺ than K⁺. However, these podands transport metal picrates at poor rates. In general, the increase in lipophilicity in podands (<u>6</u>) in comparison with podands (<u>5</u>), results in better transport and extraction rates. Podands (<u>4a</u>), (<u>5a</u>) and (<u>6a</u>) with hydroxyethyl chain at N-1 of pyrimidinedione in general show selectivity towards Tl⁺ picrate over K⁺, Na⁺ and NH₄ picrates. <u>8a</u> extracts Tl⁺ picrate nearly 3 times than Na⁺, K⁺ and NH₄ picrates and transports Tl⁺ picrate nearly 25, 14, 8.5, and 10 times than K⁺, Na⁺, NH₄ and Li⁺ picrates respectively. However, with <u>8b</u>, the selectivity of transport is lowered.

Thus, the presence of two carbon unit chain at N-1 of pyrimidinedione in podands ($\underline{4a}$), ($\underline{5a}$), ($\underline{6a}$), and ($\underline{8a}$) favours the extraction and transport of metal picrates with selectivity towards Tl^+ picrate over Li^+ , Na^+ , K^+ and NH_4^+ picrates than their analogs ($\underline{4a}$, $\underline{5b}$, $\underline{6b}$ and $\underline{8b}$) with three carbon chains at N-1 of pyrimidinedione.

ACKNOWLEDG EMENT

We thank DST for research grant (SP/SI/100/87) and UGC for financial assistance under COSIST and SAP programmes.

REFERENCES AND NOTES

- 1. L. Stryer, 'Biochemistry', W. H. Freeman and Company, 1981, P.512.
- 2.a D. J. Cram, Angew. Chem. Int. Ed. Engl., 1986, 25, 1039.
 - b T. Kinoshita, S. Odawara, K. Fukumura, and S. Furukawa, <u>J. Heterocycl</u>.

 <u>Chem.</u>, 1985, 22, 1573.
- S. S. Moore, T. L. Tarnowski, M. Newcomb, and D. J. Cram, <u>J. Am. Chem. Soc.</u>
 1977, <u>99</u>, 6398.
- 4. H. Singh, M. Kumar, P. Singh, and S. Kumar, J. Incl. Phenom., 1989, 7, 333.
- Condensations of 6-methyl-1,3-oxazine-2,4(3H)-dione with diiodomethane,
 1,2-dibromoethane and 1,3-dibromopropane failed.
- 6. All these compounds gave satisfactory spectral and analytical data.

Received, 10th September, 1990