THALLIUM SELECTIVE 6-METHYLPYRIMIDINE-2,4(1H,3H)-DIONE BASED PODANDS Subodh Kumar, Rummi Saini, and Harjit Singh Department of Chemistry, Guru Nanak Dev University, Amritsar - 143 005, India <u>Abstract</u> - Sequential reactions of dihalides and amino alcohols with 6-methyl-1,3-oxazine-2,4(3 $\underline{\text{H}}$)-diones provide title podands. <u>8a</u> selectively extracts and transports Tl^+ picrate over Li^+ , Na^+ , K^+ and NH^+_4 picrates. Compounds ($\underline{4}$), ($\underline{6}$), and ($\underline{8}$) are effective ionophores. The significance of pyrimidine-2,4(1 \underline{H} ,3 \underline{H})-dione towards complexation (\underline{H}^+) displayed remarkably in DNA and RNA strands remains more or less untapped in case of synthetic ionophores. Consequently we have designed podands ($\underline{1}$) possessing (1) a carbon chain between N-3 of two pyrimidinediones and (ii) additional heteroatom bearing chains at their N-1. CPK models of (1) (n = 1 and 2) depict an overlapping of two C-2 carbonyl oxygens of pyrimidinedione moieties, which would inhibit cavity induced ligation and in podand ($\underline{1}$) (n = 3) two oxygens 8a m = 1; 8b m = 2 of pyrimidinediones are reasonably apart but it has relatively restricted flexibility for attaining a desired pseudocavity. However, podands (1) (n = 4, 5,6), in their CPK models, display considerable flexibility and could form adjustable pseudocavities with four hetero atoms. The incorporation of 2,6-dimethylene-1-methoxy-4-methylaryl group between two N-3 of two pyrimidine-diones(8) leads to a cavitand type structure (CPK model) with an additional ligating site. Thus, we have initially synthesized podands (4-6) and (8) and investigated their extraction and transport characters towards picrates of Li⁺, Na⁺, Tl⁺ and NH₄. The podand (8a) transports thallium(I) picrate nearly 25,14,10 and 8.5 times than K⁺, Na⁺ and NH₄ picrates respectively. 6-Methyl-1,3-oxazine-2,4(3 $\underline{\text{M}}$)-dione with 1,4-dibromobutane⁵ under solid-liquid phase transfer catalytic (PTC) conditions (CH₃CN-K₂CO₃-TEBA) gave two compounds. The lower R_f component (50%), mp 157°C, M⁺ m/z 308, ¹H-nmr § 1.50-1.87(m, 4H, CH₂CH₂), 2.17(s, 6H, 2XCH₃), 3.88(t, J = 6.0 Hz, 4H, 2XNCH₂), 5.67(s, 2H, 2X pyrimidine H), could be assigned the structure, 3,3'-(1,4-butanediyl)bis(6-methyl-1,3-oxazine-2,4(3 $\underline{\text{M}}$)-dione) (2a). The higher R_f component (5%), mp 68°C M⁺ m/z 263, 261(1:1) was found to be 3<u>a</u>. Similarly, 6-methyl-1,3-oxazine-2,4-(3H)-dione with 1,5-dibromopentane, 1,6-dibromohexane and 2,6-bis(bromomethyl)-1-methoxy-4-methylbenzene gave $2\underline{b}(31\%)$, mp 139° C; $2\underline{c}$ (40%), mp 145° C, Lit., 2b 154-155°C; and 7(40%), mp 250° C, respectively. $2\underline{a}$ with 2-aminoethanol and 3-aminopropanol-1 gave $4\underline{a}$ (33%), mp 220° C, and $4\underline{b}$ (46%), 187° C, respectively. Similarly, $2\underline{b}$, $2\underline{c}$ and 7 on heating with 2-aminoethanol and 3-aminopropanol-1 gave $5\underline{a}(39\%)$, mp 134° C; $5\underline{b}(50\%)$, mp 100° C; $6\underline{a}(36\%)$, mp $194-195^{\circ}$ C, Lit., 2b $207-208^{\circ}$ C; $6\underline{b}(21\%)$, mp 165° C; $8\underline{a}(19\%)$, mp 105° C, and $8\underline{b}(15\%)$, mp 147° C, respectively. 6 Podands $|\underline{4}(\underline{a},\underline{b})|$ and $\underline{6}(\underline{a},\underline{b})|$ with even number carbon bridge between two pyrimidinones show different trends in extraction experiments as compared with $5(\underline{a},\underline{b})$. Table Extraction $(x10^3)$ ratio of metal picrate over podand in organic layer) and transport $(x10^8 \text{ mol}/24 \text{ h})$ (in parenthesis) rates of podands $(\underline{4}-\underline{6} \text{ and } \underline{8})$: | Poda | nd Li ⁺ | Na ⁺ | к+ | T1+ | NH4 | Selectivity Ratios | | | | |------|--------------------|-----------------|----------------|----------------|---------------|---------------------------------|------------------------------------|--|----------------------------------| | | | | | | 7 | T1 ⁺ /K ⁺ | Tl ⁺ /Na ⁺ T | 1 ⁺ /NH ⁺ ₄ | Tl ⁺ /Li ⁺ | | 4a | _
(7.5) | 4.09
(14) | 9.38
(50.5) | | 4.36
(109) | 1.66 | 3.81 | 3.58 | - | | 4b | (50.2) | 3.09
(15.5) | 5.08
(-)* | 4.70
(27.1) | | 0.93 | 1.52
(1.75) | | (0.54) | | 5a | _
(_) * | 1.54
(-)* | | 0.95
(13.9) | | 0.68 | 0.62 | 0.49
(1.52) | | | 5b | _
(~) * | 4.41
(-)* | | 4.32
(10.1) | | | 0.98 | 1.01 (0.59) | | | 6a | (26.1) | 9.00
(46.0) | 11.0
(20.1) | 14.0
(35.1) | | | 1.56
(0.76) | 1.19
(1.08) | (1.34) | | 6b |
(49.1) | 8.3
(52.3) | | 11.4
(50.8) | | 0.95 | 1.39
(0.97) | _ | (1.03) | | 8a | (20.9) | 2.4
(15.5) | 2.7
(8.7) | 8.4
(221) | | 3.05
(25.4) | | | | | d8 | _
(42.3) | 5.5
(54.1) | | | | 1.15
(2.31) | 1.09
(1.93) | | (2.47) | | *Not | transpor | ted | | | | | | | | Podands ($\underline{4a}$) and ($\underline{6a}$) with hydroxyethyl chain at N-1 extract metal picrates better than $\underline{4b}$ and $\underline{6b}$ possessing hydroxypropyl chain. But, $\underline{5a}$ extracts metal picrates poorly than $\underline{5b}$. Further, podands ($\underline{4}$) and ($\underline{6}$) show selectivity towards K⁺ than Na⁺ but <u>5a</u> and <u>5b</u> selectively extracts Na⁺ than K⁺. However, these podands transport metal picrates at poor rates. In general, the increase in lipophilicity in podands (<u>6</u>) in comparison with podands (<u>5</u>), results in better transport and extraction rates. Podands (<u>4a</u>), (<u>5a</u>) and (<u>6a</u>) with hydroxyethyl chain at N-1 of pyrimidinedione in general show selectivity towards Tl⁺ picrate over K⁺, Na⁺ and NH₄ picrates. <u>8a</u> extracts Tl⁺ picrate nearly 3 times than Na⁺, K⁺ and NH₄ picrates and transports Tl⁺ picrate nearly 25, 14, 8.5, and 10 times than K⁺, Na⁺, NH₄ and Li⁺ picrates respectively. However, with <u>8b</u>, the selectivity of transport is lowered. Thus, the presence of two carbon unit chain at N-1 of pyrimidinedione in podands ($\underline{4a}$), ($\underline{5a}$), ($\underline{6a}$), and ($\underline{8a}$) favours the extraction and transport of metal picrates with selectivity towards Tl^+ picrate over Li^+ , Na^+ , K^+ and NH_4^+ picrates than their analogs ($\underline{4a}$, $\underline{5b}$, $\underline{6b}$ and $\underline{8b}$) with three carbon chains at N-1 of pyrimidinedione. ## ACKNOWLEDG EMENT We thank DST for research grant (SP/SI/100/87) and UGC for financial assistance under COSIST and SAP programmes. ## REFERENCES AND NOTES - 1. L. Stryer, 'Biochemistry', W. H. Freeman and Company, 1981, P.512. - 2.a D. J. Cram, Angew. Chem. Int. Ed. Engl., 1986, 25, 1039. - b T. Kinoshita, S. Odawara, K. Fukumura, and S. Furukawa, <u>J. Heterocycl</u>. <u>Chem.</u>, 1985, 22, 1573. - S. S. Moore, T. L. Tarnowski, M. Newcomb, and D. J. Cram, <u>J. Am. Chem. Soc.</u> 1977, <u>99</u>, 6398. - 4. H. Singh, M. Kumar, P. Singh, and S. Kumar, J. Incl. Phenom., 1989, 7, 333. - Condensations of 6-methyl-1,3-oxazine-2,4(3H)-dione with diiodomethane, 1,2-dibromoethane and 1,3-dibromopropane failed. - 6. All these compounds gave satisfactory spectral and analytical data. Received, 10th September, 1990