ACID-CATALYZED PHOTOREACTION OF 6-CHLORO-1,3-DIMETHYLURACIL IN BENZENE; SYNTHESIS OF CYCLOOCTAPYRIMIDINE-2,4-DIONE

Koh-ichi Seki,* Nobuhiko Kanazashi, and Kazue Ohkura

Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University, Ishikari-Tobetsu, Hokkaido 061-02, Japan

<u>Abstract</u> - The photolysis of 6-chloro-1,3-dimethyluracil in benzene afforded 1,3-dimethyl-6-phenyluracil, while the photoreaction in the presence of trifluoroacetic acid afforded 1,3-dimethylcyclooctapyrimidine-2.4-dione as a major product.

Since photocycloaddition of maleic anhydride to benzene was first reported,¹ there has been much work concerning the mechanistic details of the process.² However the synthetic application of the reaction to heterocyclic compounds has not yet been made. In our continuing studies on the photo-reaction of halouracils with substituted benzenes,³ we now report that a [2+2]cycloaddition product 1,3-dimethylcyclooctapyrimidine-2,4-dione (1) was first obtained by the photolysis of 6-chlo-ro-1,3-dimethyluracil (6-CIDMU) in benzene in the presence of trifluoroacetic acid (TFA).

Photolysis of a solution of 6-CIDMU (4.36 mg, 0.025 mmol) in benzene (5ml) in the presence of TFA $(0.05 \text{ mmol})^4$ with a 500 W high pressure mercury lamp in a degassed Pyrex test tube using a merrygo-round apparatus gave 1 (mp 130-131°, yellow plates recrystallized from i-propanol)⁵ in appreciable yield (62%, based on 6-CIDMU consumed), presumably led through [2+2]cycloaddition process, whereas, under the similar conditions but in the absence of TFA, 6-phenyl-1,3-dimethyluracil (2) was obtained in 33 % yield (Scheme 1, Table 1).

The mass spectrum of 1 showed m/z 216 (100%, M⁺). The proton nuclear magnetic resonance (¹H-nmr) spectrum of 1 (acetone-d₆) exhibited two sharp signals at 3.23 and 3.31 ppm due to the *N*-methyl groups and peaks ascribable to six vinyl protons between 5.95-6.35 ppm, which was analyzed by ¹H-¹H shift-correlated spectroscopy and nuclear Overhauser effect spectroscopy.⁶

In contrast with the above finding, photoreaction of 6-iodo- and 6-bromo-1,3-dimethyluracils (6-IDMU, 6-BrDMU) and benzene proceeded smoothly under the similar conditions to furnish 2 as a major product together with 1,3-dimethyluracil (DMU), but no $1.^7$ The added acid was inefficient on the formation of 1 or 2, though the yield of DMU was suppressed appreciably (Table I).

No cycloadduct was obtained by the photolysis of 1,3-dimethyluracil or 1,3-dimethylthymine in benzene either in the absence or presence of TFA.

The uv spectrum of 6-ClDMU (λ_{max} 262 nm) (0.08 mM) shifted ca. 6 nm to the red in cyclohexane by the addition of TFA (9 equiv. molar).⁸ This new spectrum was insensible to the added benzene,

whereas the fluorescence of this solution was quenched efficiently with benzene. Furthermore, addition of a triplet quencher, piperylene, to the reaction with benzene was ineffective on the formation of 1, suggesting that the present cycloaddition may proceed via the singlet excited state of protonated 6-CIDMU or the charge transfer complex of 6-CIDMU and TFA.

Table I. Photolysis of 1,3-Dimethyl-6-halouracils (6-XDMU) in Benzene

6-XDMU/ X		Yields (%) ^{a,b)}				
	Reaction time (h)	TFA (mmol)	1	2	DMU	Consumed 6-XDMU (%) ^{a)}
C1	10	0		33		11
	10	1.2	32	3.3		69
	10	0.05	62	3.8		41
Br	10	0		53	16	94
	10	0.05		33	8	95
I	2.5	0		72	1.1	71
	2,5	1.2		74	0.3	97

a) Determined by hplc. b) Based on 6-XDMU consumed.

It is noteworthy that the formation of 1 provides the first example of the photocycloaddition product between a uracil ring and benzene.

Further studies on the mechanisms and synthetic application of the present reaction are in progress.

REFERENCES AND NOTES

- 1 D. Bryce-Smith and A. Gilbert, Tetrahedron 1977, 33, 2459.
- 2 J. Mattay, J. Photochem., 1987, 37, 167, and references therein.
- 3 K. Seki, K. Matsuda, Y. Bando, and K. Ohkura, <u>Chem. Pharm. Bull.</u>, 1988, **36**, 4737; K. Seki and K. Matsuda, <u>Nucleic Acids Res.</u>, Symp. Ser., 1988, **17**, 25.
- 4 Similar results were obtained by using zinc chloride in place of TFA.
- 5 Satisfactory analytical data were obtained.
- 7 R. D. Youssefyeh and L. Lichtenberg, J. Chem. Soc. Perkin Trans. 1, 1974, 2650.
- 8 Similar shifts were observed for 6-BrDMU and 6-IDMU.

Received, 25th December, 1990