REVISED STRUCTURES OF ALBANINS D AND E, GERANYLATED FLAVONES FROM MORUS ALBA¹

Toshio Fukai and Taro Nomura^{*} Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274, Japan

<u>Abstract</u> — The chemical shifts of the proton signals of the hydrogen-bonded hydroxyl groups of albanins D and E, isolated from <u>Morus alba</u> L. (Moraceae), were compared with those of the hydroxyl groups of 6- or 8-isoprenoid substituted flavones to doubt the location of the geranyl groups of albanins D and E. The proposed structures (3) and (4) for albanins D and E were revised to the structures (1) and (2), respectively, on the basis of the syntheses of 6-geranylated flavones (1 and 2) and 8-geranylated flavones (3 and 4).

In the previous papers,^{2,3} we reported that the chemical shifts of hydrogen-bonded hydroxyl groups of 6-isoprenoid substituted flavanones and isoflavones appeared more downfield than those of 6-nonsubstituted flavanones and isoflavones, respectively. In this paper, we report the observation on the chemical shifts of the hydrogen-bonded hydroxyl groups at the C-5 position of the 6- or 8-isoprenoid substituted flavones, and also describe the revision of the proposed structures (3 and 4) for albanins D and E isolated from Morus alba L.^{4,5}

We examined the ¹H nmr spectra (in acetone-d₆) of 19 kinds of the known 6- or 8isoprenoid substituted flavones. The hydrogen-bonded hydroxyl groups of the 6-prenylated flavones were observed in the range of δ 13.18 - 13.43, while the chemical shifts of hydroxyl groups of the 8-prenylated or geranylated flavones were classified into the two groups: 1) δ 12.84 - 13.15 (data from the four compounds), 2) δ 13.25 - 13.32 (albanins D and E from <u>M. alba</u>) (Table 1). In the case of pyranoflavones, the hydrogen-bonded hydroxyl groups of the angular type flavones were observed in the range of δ 12.98 - 13.29, while the relevant proton signals of the linear type flavones in the range of δ 13.26 - 13.57 (Table 2).

trivial name	chemical shift of 5-OH	prenylation shift**	isoprenoid group on A-ring	OH positions	others	ref.
albanin A	13.16		none	5,7,2',4'	3-prenyl	5
cudraflavone C	13.43 ^a	-0.27	6-prenyl	5,7,2',4'	3-prenyl	13
kuwanon C	13.09	+0.07	8-prenyl	5,7,2',4'	3-prenyl	14
chrysin	12.91		none	5,7		15
no name	13.18 ^b	-0.27	6-prenyl	5,7		16
no name	12.84 [°]	+0.07	8-prenyl	5,7		16
kuwanon S	13.04		none	5,7,4'	3'-geranyl	14
gancaonin Q	13.31 ^d	-0.27	6-prenyl	5,7,4'	3'-prenyl	17
gancaonin O	13.28		6-prenyl	5,7,3',4'		2
cudraflavone D	13.37		6-prenyl	5,7,2',4'	5'~prenyl	13
canniflavin B*	13.30		6-prenyl	5,7,4'	3'-OMe	18
canniflavone-1*	13,28		6-prenyl	5,7,4'	З'-ОМе	19
brosimone H*	13.15		8-geranyl	5,2',4'	3-prenyl,7-OMe	7
apigenin (5)	13.02		none	5,7,4'		15
albanin D	13.25 ^e	-0.23	(8-geranyl)	5,7,4'		5,6
licoflavone B §	13.28	-0.26	6-prenyl	5,7,4'		20,21
norartocarpetin (6) 13.15		none	5,7,2',4'		22
albanin E ^{+,*}	13.32	-0.17	(8-geranyl)	5,7,2',4'		5,6
albanin E [#]	13.09	+0.06	8-geranyl	5,7,2',4'		7,8

Table 1. Chemical shifts of 5-OH in acetone-d_6 at 23 $^{\circ}\mathrm{C}$ (400 MHz)

**: Induced shift by prenylation (geranylation) at C-6 or C-8 position. a: δ 13.29 (90 MHz, 35 °C). b: δ 13.04 (90 MHz, 35 °C). c: δ 12.69 (90 MHz, 35 °C). d: δ 13.17 (90 MHz, 35 °C). e: δ 13.12 (100 MHz, ref. 6) *: Data from corresponding reference. §: isolated from <u>Artocarpus venenosa</u> (ref. 21), +: isolated from <u>M. alba</u>. (measured in DMSO-d₆-acetone-d₆=1:2). #: isolated from <u>B. oblongifolia</u> (courtesy of F. Ferrari).

Table 2. Chemichal shifts of 5-OH of pyranoflavone in acetone-d₆ at 23 $^{\circ}$ C (400 MHz)

trivial name	chemical shift of 5-OH	shift value*	structure of A- and D-ring	OH positions	others	ref.
morusin (12)	13.25 ^a	-0.09	angular	5,2',4'	3-prenyl	14
cudraflavone B (13)	13.57	-0.41	linear	5,2',4'	3-prenyl	14
brosimone G [§]	13,25	-0.09	angular	5,2',4'	5"-C-prenyl	7
oxydihydro- morusin (14)	13.29 ^b		angular	5,2',4'	3-(3"-OH)- isoamyl	14
cyclomorusín (15)	12,98		angular	5,4'		14
cudraflavone A (16)	13.26 [°]		linear	5,4'		14
morusin (12) cudraflavone B (13) brosimone G [§] oxydihydro- morusin (14) cyclomorusin (15) cudraflavone A (16)	13.25 ^a 13.57 13.25 13.29 ^b 12.98 13.26 ^c	-0.09 -0.41 -0.09	angular linear angular angular angular linear	5,2',4' 5,2',4' 5,2',4' 5,2',4' 5,4' 5,4'	3-prenyl 3-prenyl 5"-C-prenyl 3-(3"-OH)- isoamyl	14 14 7 14 14

*: Difference of chemical shifts between the pyranoflavone and albanin A. §: Data from

corresponding reference. a: \$13.20 (90 MHz, 35°C). b: \$13.24 (90 MHz, 35°C). c: \$13.21 (400 MHz, 50°C).

Figure 1. Chemichal Shifts of 5-OH proton of isoflavones and flavanones.
*: Induced shift by prenylation at 6~ or 8-position.

Figure 2.

501

HETEROCYCLES, Vol. 32, No. 3, 1991

On the other hand, the chemical shifts of hydrogen-bonded hydroxyl groups at the C-5 position of isoflavones and flavanones show the remarkable downfield shift (ca. ~0.3 ppm) by prenylation at the C-6 position, while those of the hydroxyl groups show the slight upfield shift (ca. +0.05 ppm) by prenylation at the C-8 position (Figure 1).^{2,3} In the case of some flavones, the similar shifts were observed by prenylation at the C-8 or C-6 positions (Table 1). In comparison between the chemical shifts of the hydroxyl groups of apigenin (5) and albanin D, the remarkable downfield shift (-0.23 ppm) were observed. The similar downfield shift (-0.17 ppm) was observed by comparing norartocarpetin (6) with albanin E (Table 1). The above downfield shift values (-0.23 and -0.17 ppm) are inconsistent with the slight upfield shift value (ca. +0.05 ppm) observed in some flavones prenylated at the C-8 position. To elucidate the inconsistency we synthesized 8-geranylapigenin (3) and its 6-isomer (1) as well as 8-geranylnorartocarpetin (4) and its 6-isomer (2) (Scheme 1). The location of the geranyl groups in the structures (1, 2, 3, and4) was confirmed by the 13 C nmr spectra (gated decoupling with NOE) and long-range selective proton decoupling (LSPD) experiment (Table 3). The synthetic flavones were identified with albanins D and E on the fact that the physical and spectral data (melting points, uv and l H nmr spectra) of synthesized flavones 1 and 2 were in agreement with the relevant data of albanins D and E, 6 respectively. From the above results, the proposed structures (3) and (4) for albanins D and E isolated from M. alba should be revised to the structures (1) and (2), respectively. On the other hand, Ferrari et al. reported the isolation of 8-geranylnorartocarpetin from Brosimopsis oblongifolia (Moraceae) and described as "albanin E".⁷ Albanin E from <u>B.</u> <u>oblongifolia</u> was identical with the synthetic **4** in comparison of the 1 H nmr spectra and tlc analysis.⁸ As the structure of albanin E from M. alba was revised, the trivial name "albanin E" for the flavone isolated

EXPERIMENTAL

Abbreviations; $s \approx singlet$, d = doublet, dd = double doublet, t = triplet, m = multiplet, br = broad. The general procedures and the instruments used are described in our previous papers.^{3,9}

5,7,4'-Tris(methoxymethoxy)flavanone (8a)

from B. oblongifolia should be changed to the other one.

A mixture of 2'~hydroxy-4,4',6'-tris(methoxymethoxy)chalcone (7a, 1 g, 2.5 mmol)¹⁰ and sodium

502

Scheme 1.

100			6
с	1		3
2	16/ 79	(Sd + 2 I - 4 3 I - 6 Hz)*	165 07 (br S)
2	104.04	$(B_{1}, J_{-1}, J_{-$	103.89 (D I_{-168} Hz)
3	183 13	(5)	183 45 (S)
4	105.24	(Sm)	105.45 (S)
4a 5	160 21	$(SH)^{(SH)} = 2 - 3 - 4 Hz$	161 01 (St 2 - 3 - 4 Hz)
0 6	110.21	(Srd) 50H-C5 H1"-C5	101.01 (50, 10 = 0 = 4 Hz)
7	162 44	$(S_{\pm d}^{(S_{\pm d})})^{3} = 4 \frac{2}{1-2} H_{z}$	163.35 (bu, $3-100$, $50H-C6^{-7}$ Hz)
/ 0	0/ 10	(D 1 - 164 Hz)	102.25 (br S)
80	156 56	$(S_{1} = 104 \text{ Hz})$	$156.09(S+3) = 4 H_{\pi}$
11	129 /3	(50, y=4 nz)	123.66 (Sm) $H1''-C8a^{-4}$ $H2'$
1 61	120.140	$(D_{1}, 1) = 0$ and $(D_{1}, 1) = 0$ and $(D_{1}, 1) = 0$	123.00 (pm) 1 120.00 (pm) 1 1.101 3 1.7 m
21,01	116 94	(Dd, 1=161, 3=7 nz)	129.20 (Dd, $1^{3}101$, $3^{3}1-4$ Hz)
3,3	161 70	(5t+3t-10, 2t-4, Hz)	161.04 (8++ 3 - 2 - 2 + 3)
10	21 05	(300, 1) = 10, 20 = 4 Hz	22.29 (md 1, 100 $21-4$ Hz)
20	100 10	$(10, 1 = 124, 3 = 4 \pi 2)$	22.20 (10, $3=129$, $3=4$ nZ)
2	125.10	(Dm, J=Ca. 150 Hz)	125.62 (Dm, Overlapped with C/")
419	16 07	$\left(\frac{1}{2} \right)$	135.74 (DF 5)
4 6.11	10.27	$(\Psi_{m}, 1) = \frac{1}{125} + 1$	10.55 (Qm, 1)=Ca. 124 Hz)
5. 611	40.0Z	(1m, 1 = ca. 125 Hz)	40.35 (Im, $3=ca$, 125 Hz)
0 711	105 15	(1m, 1 = ca. 125 Hz)	27.33 (Im, $J=ca. 120$ HZ)
7	120.10	(Dm, J=ca. 150 Hz)	125.02 (bm, overlapped with 02")
01	17 40	$\binom{(301)}{1}$	131.00 (pr 5)
1.011	25 70	(Qm, 1=22.125 mz)	17.66 (Qm, 1) = Ca. 124 Hz)
	20,70		23,73 (qm, 0- <u>ca.</u> 124 m²)
с	2		4
2	162.61	$(St, 2_{J=3}, J_{=4}, H_Z)$	162.82 (St. $^{2}J_{=}^{3}J_{=}4$ Hz)
3	108.59	$(D, 1_{J=1}, T_{O}, H_{Z})$	108.44 (D. 1 J=166 Hz)
4	183.51	(S)	183.81 (5)
4a	105.13	(S. overlapped with C3')	105-38 (Sm)
5	160.18	(Std. J = J = 4 Hz)	161.00 (St. $2J=3$, $J=4$ Hz)
6	112.05	(Sm) 50H-C5 H1"-C5	99.06 (Dd, J=160, J = 6 Hz)
7	162.34	(Sm. overlapped with C4')	161.96 (Sm) 50H-C6
8	93.89	(D, J=163 Hz)	107.23 (Sm)
- 8a	156.65	(Sd, 2J=4 Hz)	156.21 (St. 3 =4 Hz)
1,	110,97	(Sm)	H1''-C8a 111.26 (Sdd. J=4 and 6 Hz)
21	159.19	$(\text{Sdd}, {}^2\text{J}_{=3}, {}^3\text{J}_{=10} \text{Hz})$	159.23 (Sdd, $J=3$, $J=10$ Hz)
3'	104.39	(Dd, J=158, J=5 Hz)	104.41 (nd. $J=158$, $J=4$ Hz)
4'	162.43	(Sm. overlapped with C7)	162.45 (Std. $2J=3$, $3J=10$ Hz)
51	109.09	(Dd = J = 1.60 = J = 5. Hz)	109 13 (Dd 1-164 1-5 Hz)
<u>ة</u> '	130.86	$(D_{1}^{-1})^{-1} = (D_{1}^{-1})^{-1} = (D_{$	131 02 (D 1-161 Hz)
1"	21.94	(Td, J=128, J=4, Hz)	22 30 (Td $J=128$ $J=4$ Hz)
2"	123.30	(Dm, J=ca, 150 Hz)	123.72 (Dm, $1_{\rm J=ca.}$ 145 Hz)
3"	135,24	(Sm)	135.69 (Sm)
4"	16.26	(Qm, J=ca, 125 Hz)	16.52 (Qm. ¹ J=ca. 125 Hz)
5"	40.53	(Tm, J=ca, 125 Hz)	40.39 (Tm, J=ca, 125 Hz)*
6"	27.44	(Tm, J=ca, 125 Hz)	27.37 (Om, $J=ca. 125$ Hz)
7"	125.17	(Dm, J=ca. 150 Hz)	125.07 (Dm, $J=ca.$ 145 Hz)

Table 3. 13 C Nmr data of synthetic flavones (1 - 4) in acetone-d, (100.4 MHz)[§]

§: The following results were observed with the LSPD experiments by irradiation of the 5-OH proton, 1; C4a (Sm \rightarrow St, ${}^{3}J_{=4}$ Hz), C5 (Std \rightarrow St, ${}^{3}J_{H1"-C5}=4$ Hz), C6 (changed), 2; C5 (Std \rightarrow St, ${}^{3}J_{H1"-C5}=4$ Hz), C6 (changed), 3; C4a (Sm \rightarrow St, ${}^{3}J_{=4}$ Hz), C5 (St \rightarrow Sd, ${}^{2}J_{H6-C5}=4$ Hz), C6 (Dd \rightarrow D, ${}^{1}J_{=160}$ Hz), 4; C4a (Sm \rightarrow St, ${}^{3}J_{=4}$ Hz), C5 (St \rightarrow Sd, ${}^{2}J_{H6-C5}=4$ Hz), C6 (Dd \rightarrow D, ${}^{1}J_{=160}$ Hz). *: Capital letters refer to pattern resulting from directly bonded proton(s) and lower case letters to long-range ${}^{13}C-{}^{1}H$ coupling.

125.07 (Dm, 131.66 (Sm) 17.68 (Qm, $1_{J=ca.}$ 125 Hz) 25.75 (Qm, J=ca. 125 Hz)

8" 9" 10" 131.56 (Sm) 17.69 (Qm, $^{1}_{J=ca.}$ 125 Hz) 25.79 (Qm, $^{1}_{J=ca.}$ 125 Hz)

505

acetate (1.7 g, 20.7 mmol) in methanol (20 ml) was refluxed for 2 h, and then treated as usual. The reaction product was chromatographed on silica gel with benzene containing increasing amount of acetone as an eluent to give B_a (580 mg, 58%). Compound (B_a) showed the following data: mp 102°C (colorless prisms, crystallized from <u>n</u>-hexane). Anal. Calcd for $C_{21}H_{24}O_8$: C, 62.37; H, 5.98. Found: C, 62.60; H, 6.03. EI-Ms, <u>m/z</u> (rel. int.): 405 [M+1]⁺ (2%), 404 [M]⁺ (8), 389 (6), 373 (5), 359 (10), 331 (5), 240 (6), 195 (10), 164 (12), 45 (100). ¹H Nmr (CDCl₃, 90 MHz): δ 2.73 (1H, dd, J = 4 and 16.5 Hz, C-3-H), 3.03 (1H, dd, J = 12 and 16.5 Hz, C-3-H), 3.48 (6H, s, OCH₂OCH₃x2), 3.54 (3H, s, OCH₂OCH₃), 5.15, 5.18, 5.27 (each 2H, s, OCH₂OCH₃), 5.35 (1H, dd, J = 4 and 12 Hz, C-2-H), 6.35, 6.43 (each 1H, d, J = 2 Hz, C-6-H or C-8-H), 7.05 (2H, d, J = 9 Hz, C-3'-H and C-5'-H), 7.37 (2H, d, J = 9 Hz, C-2'-H and C-6'-H).

7,4'-Dimethoxymethylapigenin (10a)

A mixture of 8a (624 mg, 1.5 mmol), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ, 360 mg, 1.6 mmol) and dry dioxane (0.5 ml) in dry benzene (10 ml) was refluxed for 5 h, and then treated as usual. The reaction product was chromatographed on silica gel with benzene as an eluent to give 7,4'-bis(methoxymethoxy)-5-hydroxyflavanone (9a, 75 mg, 13.5%) and 10a (260 mg, 47%). Compound (9a) showed the following data: mp 88 - 89°C (colorless prisms, crystallized from methanol). FeCl, test: reddish brown. EI-Ms, m/z (rel. int.): 361 [M+1]⁺ (17%), 360 [M]⁺ (76), 329 (4), 315 (7), 254 (5), 241 (4), 223 (9), 196 (4), 182 (3), 164 (10), 151 (38), 147 (11), 121 (4), 45 (100). HR-Ms, m/z: 360.1196 $[M]^+$ ($C_{10}H_{20}O_7$ requires: 360.1209). ¹H Nmr (CDCl₃, 90 MHz): ∂ 2.75 (1H, dd, J = 3.5 and 17 Hz, C-3-H), 3.09 (1H, dd, J = 12 and 17 Hz, C-3-H), 3.43, 3.47 (each 3H, \mathfrak{s} , OCH₂OCH₃), 5.13, 5.17 (each 2H, s, OCH_OCH_3), 5.34 (1H, dd, J = 3.5 and 12 Hz, C-2-H), 6.15 (2H, s, C-6-H and C-8-H), 7.05 (2H, d, J = 9 Hz, C-3'-H and C-5'-H), 7.35 (2H, d, J = 9 Hz, C-2'-H and C-6'-H), 11.83 (1H, s, C-5-OH). Compound (10a) showed the following data: mp 152 - 153 C (pale yellow needles, crystallized from methanol). Anal. Calcd for C₁₉H₁₈O₇: C, 63.68; H, 5.09. Found: C, 63.27; H, 5.07. EI-Ms, $\underline{m/z}$ (rel. int.): 359 [M+1]⁺ (10%), 358 [M]⁺ (49), 343 (3), 327 (5), 326 (7), 45 (100). ¹H Nmr (CDCl₃, 90 MHz): δ 3.50 (6H, s, 0CH₂0CH₃x2), 5.23 (4H, s, 0CH₂0CH₃x2), 6.43 (1H, d, J = 2 Hz, C-6-H), 6.54 (1H, s, C-3-H), 6.62 (1H, d, J = 2 Hz, C-8-H), 7.11 (2H, d, J = 9 Hz, C-3'-H and C-5'-H), 7.78 (2H, d, J = 9 Hz, C-2'-H and C-6'-H), 12.62 (1H, s, C-5-0H).

Preparation of 8-geranylapigenin (3) and 6-geranylapigenin (1) from 10a

A mixture of 10a (267 mg, 0.8 mmol), geranyl bromide (0.5 ml, 2.3 mmol), and KOH (0.3 g, 5.4 mmol) in methanol (50 ml) was allowed to stand for 4 h. After treated as usual, the reaction product was purified by preparative tlc (silica gel, solvent system: <u>n</u>-hexane-acetone=4:1, $CHCl_3$ only) to give 7,4'-dimethoxymethyl-8-geranylapigenin (**3a**, 9 mg, 2.4%), 7,4'-dimethoxymethyl-6-geranylapigenin (**1a**, 9 mg, 2.4%), 7,4'-dimethoxymethyl-6-geranylapigenin (**1a**, 9 mg, 2.4%), 7,4'-dimethoxymethyl-6-geranylapigenin (**1a**, 120 mg, 45%). A mixture of **1a** (9 mg) and 3N HCl (0.5 ml) in methanol (5 ml) was refluxed for 15 min. The mixture was diluted with water (20 ml) and treated as usual. The reaction product was purified by preparative tlc (silica gel, benzene-acetone=5:1) to give **1** (3 mg, 41%). A mixture of **3a** (9 mg) and 3N HCl (0.5 ml) in methanol (5 ml) and treated as usual. The reaction product was purified by preparative tlc (silica gel, benzene-acetone=5:1) to give **1** (3 mg, 41%). A mixture of **3a** (9 mg) and 3N HCl (0.5 ml) in methanol (5 ml) was refluxed for 15 min. The mixture was diluted with water (20 ml) and treated for 15 min. The mixture was diluted models usual. The reaction product was purified by preparative tlc (silica gel, benzene-acetone=5:1) to give **1** (3 mg, 41%). A mixture of **3a** (9 mg) and 3N HCl (0.5 ml) in methanol (5 ml) was refluxed for 15 min. The mixture was diluted with water (20 ml) and treated as usual. The reaction product was purified by preparative tlc (silica gel, benzene-acetone=5:1) to give **3** (5 mg, 68%). Compound (**3a**) showed the following data: mp 117 - 118°C (pale yellow needles, crystallized from methanol). FeCl₃ test: greenish brown. Gibbs test: negative. EI-Ms, <u>m/z</u> (rel. int.): 495 [M+1]⁺ (7%), 494 [M]⁺ (23), 449 (4), 425 (5), 393 (8),

381 (4), 371 (15), 358 (10), 339 (6), 327 (9), 45 (100). HR-Ms, <u>m/z</u>: 494.2296 $\left[\mathrm{M}\right]^{+}$ (C₂₉H₂₄O₇ requires: 494.2304). ¹H Nmr (CDCl₃, 90 MHz): δ1.52, 1.61 (each 3H, br s, C-8"-CH₃), 1.82 (3H, br s, C-3"-CH₂), 2.00 (4H, br s, C-5"-Hx2 and C-6"-Hx2), 3.51 (6H, s, OCH₂OCH₂x2), 3.57 (2H, br d, J = 7 Hz, C-1"-Hx2), 5.0 ~ 5.3 (2H, m, C-2"-H and C-7"-H), 5.27 (4H, s, OCH_OCH_x2), 6.58 (1H, br s, C-6-H), 6.59 (1H, s, C-3-H), 7.14 (2H, d, J = 9 Hz, C-3'-H and C-5'-H), 7.84 (2H, d, J = 9 Hz, C-5'-H), 7.84 (2H, d, J = 9 Hz C-2'-H and C-6'-H), 12.64 (1H, s, C-5-OH). Compound (1a) showed the following data: mp 85 ~ 87°C (pale yellow needles, crystallized from methanol). FeCl₃ test: green. Gibbs test: positive (navy blue). EI-Ms, $\underline{m/z}$ (rel. int.): 495 $[M+1]^+$ (10%), 494 $[M]^+$ (29), 479 (3), 449 (4), 425 (25), 393 (8), 383 (15), 371 (69), 327 (11), 283 (6), 45 (100). HR-Ms, $\underline{m/z}$ 494.2310 [M]⁺ ($C_{29}H_{34}O_7$ requires: $^{\perp}$ H Nmr (CDCl₂, 90 MHz): § 1.58, 1.64 (each 3H, br s, C-8"-CH₂), 1.81 (3H, br s, 494.2304). C-3"-CH₂), 2.00 (4H, br s, C-5"-Hx2 and C-6"-Hx2), 3.41 (2H, br d, J = 7 Hz, C-1"-Hx2), 3.50 (6H, s, OCH_OCH_x2), 5.1 - 5.3 (2H, m, C-2"-H and C-7"-H), 5.24, 5.30 (each 2H, s, OCH_OCH_2), 6.57 (1H, s, C-3-H), 6.72 (1H, br s, C-8-H), 7.12 (2H, d, J = 9 Hz, C-3'-H and C-5'-H), 7.83 (2H, d, J = 9 Hz, C-2'-H and C-6'-H), 12.79 (1H, s, C-5-OH). Compound (11a) was obtained as a yellow oil and showed the following data. FeCl₃ test: negative. EI-Ms, m/z (rel. int.): 495 $[M+1]^+$ (4%), 494 $[M]^+$ (13), 479 (2), 449 (3), 426 (3), 425 (9), 412 (10), 393 (3), 371 (7), 367 (15), 359 (13), 358 (45), 327 (7), 326 (7), 69 (13), 45 (100). HR-Ms, $\underline{m/z}$ 494.2309 $[M]^+$ ($C_{29}H_{34}O_7$ requires: 494.2304). ¹H Nmr $(CDC1_3, 90 \text{ MHz}): \delta 1.60, 1.67 \text{ (each 3H, br s, C-8"-CH}_3), 1.77 \text{ (3H, br s, C-3"-CH}_3), 2.18 \text{ (4H, br s, C-8"-CH}_3), 2.18 \text{ (each 3H, br s, C-8"-CH}_3), 1.77 \text{ (abla br s, C-8"-CH}_3), 2.18 \text{ (bb s, C-8"-CH}$ C-5"-Hx2 and C-6"-Hx2), 3.49, 3.52 (each 3H, s, OCH_2OCH_3), 4.75 (2H, br d, J = 6.5 Hz, C-1"-Hx2), 5.0 - 5.25 (1H, m, C-7"-H), 5.25 (4H, s, $OCH_0CH_0x^2$), 5.58 (1H, br t, J = 6.5 Hz, C-2"-H), 6.46 (1H, d, J = 2 Hz, C-8-H), 6.55 (1H, s, C-3-H), 6.74 (1H, d, J = 2 Hz, C-8-H), 7.11 (2H, d, J = 9 Hz)Hz, C-3'-H and C-5'-H), 7.81 (2H, d, J = 9 Hz, C-2'-H and C-6'-H). Compound (3) showed the following data: mp 147 - 150 °C (pale yellow prisms, crystallized from acetone). FeCl₃ test: olive. Gibbs test: negative. EI-Ms, $\underline{m/z}$ (rel. int.): 407 $[M+1]^+$ (17%), 406 $[M]^+$ (60), 349 (6), 337 (80), 323 (21), 321 (16), 309 (8), 295 (18), 283 (100), 270 (29), 254 (2), 219 (10), 165 (17). HR-Ms, m/z 406.1785 ($C_{25}H_{26}O_5$ requires: 406.1780). Uv $\lambda_{max}^{\text{EtOH}}$ nm (log £): 205 (4.06), 220 (sh 3.93), 274 (3.75), 300 (3.64), 325 (3.67), 360 (infl. 3.46). Uv $\lambda_{max}^{\text{EtOH+AlCl}}$ 3: 230 (sh 3.96), 282 (3.74), 308 (3.74), 165 (3.67), 360 (infl. 3.46). Uv $\lambda_{max}^{\text{EtOH+AlCl}}$ 3: 230 (sh 3.96), 282 (3.74), 308 (3 346 (3.74), 395 (4.44). ¹H Nmr (acetone-d₆, 400 MHz): δ 1.49 (3H, br d, J = 0.7 Hz, C-8"-CH₃), 1.55 $(3H, br d, J = 1 Hz, C-8"-CH_3), 1.84 (3H, br d, J = 1 Hz, C-3"-CH_3), 1.89 - 2.10 (4H, m, C-5"-Hx2)$ and C-6"-Hx2), 3.58 (2H, br d, J = 7 Hz, C-1"-Hx2), 5.03 (1H, br t, J = 7 Hz, C-7"-H), 5.32 (1H, br t, J = 7 Hz, C-2"-H), 6.35 (1H, br s, C-6-H), 6.64 (1H, s, C-3-H), 7.05 (2H, d, J = 9 Hz, C-3'-H) Hz, C-3'-H and C-5'-H), 7.97 (2H, d, J = 9 Hz, C-2'-H and C-6'-H), 9.50 (2H, br s, OHx2), 12.97 (1H, s, C-5-OH). Compound (1) showed the following data: mp 205 - 207 $^{\circ}$ C (pale yellow prisms, crystallized from acetone). FeCl₂ test: dark green. Gibbs test: positive. EI-Ms, m/z (rel. int.): 407 $[M+1]^+$ (12%), 406 [M]⁺ (41), 363 (7), 349 (2), 337 (100), 323 (7), 322 (6), 321 (12), 309 (8), 295 (20), 284 (43), 283 (93), 270 (7), 254 (1), 165 (10). HR-Ms, <u>m/z</u> 406.1787 [M]⁺ (C₂₅H₂₆O₅ requires: 406.1780). Uv $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 205 (4.13), 217 (4.17), 255 (sh 3.65), 275 (3.89), 305 (3.76), 335 $(3.96). \ \text{Uv} \ \lambda_{\text{max}}^{\text{EtOH}+\text{AlCl}} \text{3: } 205 \ (4.18), \ \text{219} \ (4.12), \ 260 \ (3.61), \ 285 \ (\text{sh } 3.86), \ 304 \ (3.89), \ 354 \ (3.97), \ \text{3.89}$ 390 (sh 3.69). ¹H Nmr (acetone-d₆, 400 MHz): $\S1.55$ (3H, br d, J = 0.5 Hz, C-8"-CH₃), 1.60 (3H, br d, J = 1 Hz, C-8"-CH₂), 1.80 (3H, br d, J = 1 Hz, C-3"-CH₂), 1.94 - 2.10 (4H, m, C-5"-Hx2 and C-5"-Hx2 a C-6"-Hx2), 3.37 (2H, br d, J = 7 Hz, C-1"-Hx2), 5.08 (1H, br t, J = 7 Hz, C-7"-H), 5.33 (1H, br t, J = 7 Hz, C-2"-H), 6.61 (1H, br s, C-8-H), 6.62 (1H, s, C-3-H), 7.02 (2H, d, J = 9 Hz, C-3'-H and C-8-H), 6.61 (1H, br s, C-8-H), 6.62 (1H, s, C-3-H), 7.02 (2H, d, J = 9 Hz, C-3'-H) C-5'-H, 7.91 (2H, d, J = 9 Hz, C-2'-H and C-6'-H), 9.44 (2H, br s, OHx2), 13.29 (1H, s, C-5'-OH).

2'-Hydroxy-2,4,4',6'-tetrakis(methoxymethoxy)chalcone (7b)

A mixture of 2',4'-bis(methoxymethoxy)-6'-hydroxyacetophenone (1.1 g, 4.3 mmol),¹¹ 2,4-bis(methoxymethoxy)benzaldehyde (1.7 g, 7.5 mmol),¹² and KOH (2 g, 35.7 mmol) in methanol (5 ml) was allowed to stand for 3 h. The mixture was diluted with water (30 ml), neutralized with acetic acid, and treated as usual. The reaction product was chromatographed on silica gel with benzene containing increasing amount of acetone as an eluent to give 7b (1.6 g, 80%). Compound (7b) showed the following data: mp 95 - 96°C (yellow needles, crystallized from methanol). FeCl₃ test: olive. Anal. Calcd for $C_{23}H_{28}O_{10}$: C, 59.48; H, 6.08. Found: C, 59.34; H, 6.10. EI-Ms, <u>m/z</u> (rel. int.): 465 [M+1]⁺ (4%), 464 [M]⁺ (16), 419 (13), 402 (11), 387 (12), 241 (8), 197 (10), 45 (100). ¹H Nmr (CDCl₃, 90 MHz): §3.48, 3.51 (each 6H, s, 0CH₂OCH₃x2), 5.18, 5.25 (each 4H, s, 0CH₂OCH₃x2), 6.20, 6.28 (each 1H, d, J = 2 Hz, C-3'-H or C-5'-H), 7.52 (1H, d, J = 8 Hz, C-6-H), 7.70 (1H, dd, J = 2 and 8 Hz, C-5-H), 7.82 (1H, d, J = 15 Hz, C-qC-H), 7.84 (1H, d, J = 2 Hz, C-3-H), 8.15 (1H, d, J = 15 Hz, C-8-H), 13.79 (1H, s, C-2'-OH).

5,7,2',4'-Tetrakis(methoxymethoxy)flavanone (8b)

A mixture of **7b** (0.9 g, 1.9 mmol) and sodium acetate (1.6 g, 19.5 mmol) in methanol (20 ml) was refluxed for 6 h, and treated as usual. The reaction product was chromatographed on silica gel with benzene containing increasing amount of acetone as an eluent to give **8b** (263 mg, 29%). Compound (**8b**) showed the following data: mp 95 - 96 °C (colorless needles, crystallized from acetone). Fecl₃ test: negative. Anal. Calcd for $C_{23}H_{28}O_{10}$: C, 59.48; H, 6.08. Found: C, 59.34; H, 6.10. EI-Ms, m/z (rel. int.): 465 $[M+1]^+$ (2%), 464 $[M]^+$ (8), 419 (15), 402 (17), 387 (9), 241 (6), 224 (5), 179 (7), 45 (100). ¹H Nmr (CDCl₃, 90 MHz): &2.75 (1H, dd, J = 5 and 16 Hz, C-3-H), 3.03 (1H, dd, J = 13 and 16 Hz, C-3-H), 3.48 (9H, s, OCH_2OCH_3x3), 3.55 (3H, s, OCH_2OCH_3), 5.17 (6H, s, OCH_2OCH_3x3), 5.27 (2H, s, OCH_2OCH_3), 5.72 (1H, dd, J = 5 and 13 Hz, C-2-H), 6.37, 6.42 (each 1H, d, J = 2 Hz, C-6-H or C-8-H), 6.75 (1H, dd, J = 2.5 and 9 Hz, C-5'-H), 6.83 (1H, d, J = 2.5 Hz, C-3'-H), 7.45 (1H, d, J = 9 Hz, C-6'-H).

7,2',4'-Trimethoxymethylnorartocarpetin (10b)

A mixture of 8b (1.8 g, 3.9 mmol), DDQ (710 mg, 3.1 mmol), and dry dioxane (1 ml) in dry benzene (20 ml) was refluxed for 5 h, and treated as usual. The reaction product was chromatographed on silica gel with benzene as an eluent to give 5-hydroxy-7,2',4'-tris(methoxymethoxy)flavanone (9b, 318 mg, 20%) and 10b (695 mg, 43%). Compound (9b) showed the following data: mp 69 - 70 $^\circ$ C (colorless needles, crystallized from methanol). FeCl3 test: reddish violet. Anal. Calcd for $C_{21}H_{24}O_{12}\cdot\frac{1}{2}H_{2}O_{2}\cdot\frac{1}{2}H_{2}O_{2}$ (rel. int.): 421 [M+1]⁺ (5%), 420 $[M]^+$ (22), 402 (20), 375 (31), 358 (14), 197 (8), 45 (100). ¹H Nmr (CDCl₂, 90 MHz): δ 2.78 (1H, dd, J = 4 and 15 Hz, C-3-H), 3.03 (1H, dd, J = 12 and 15 Hz, C-3-H), 3.47 (6H, s, OCH_OCH_X2), 3.48 (3H, s, OCH₂OCH₃), 5.17 (4H, s, OCH₂OCH₃x2), 5.18 (2H, s, OCH₂OCH₃), 5.70 (1H, dd, J = 4 and 12 Hz, C-2-H), 6.18 (2H, s, C-6-H and C-8-H), 6.72 (1H, dd, J = 2 and 9 Hz, C-5'-H), 6.82 (1H, d, J = 2 Hz, C-3'-H), 7.44 (1H, d, J = 9 Hz, C-6'-H), 11.84 (1H, s, C-5-OH). Compound (10b) showed the following data: mp 106 - 108 °C (pale yellow prisms, crystallized from methanol). FeCl₂ test: reddish brown. Anal. Calcd for C₂₁H₂₂O₉: C, 60.29; H, 5.30. Found: C, 60.04; H, 5.32. EI-Ms, <u>m/z</u> (rel. int.): 419 $[M+1]^+$ (5%), 418 $[M]^+$ (19), 403 (3), 402 (3), 388 (2), 387 (3), 386 (3), 375 (5), 341 (5), 197 (2). ¹H Nmr (CDCl₃, 90 MHz): **3**3.50 (9H, s, OCH₂OCH₃x3), 5.24 (4H, s, OCH₂OCH₃x2), 5.28 $(2H, s, OCH_{2}OCH_{3}), 6.43$ (1H, d, J = 2 Hz, C-6-H), 6.58 (1H, d, J = 2 Hz, C-8-H), 6.80 (1H, dd, J = 2 Hz, C-8-H), 6.80 2 and 9 Hz, C-5'-H), 6.90 (1H, s, C-3-H), 6.90 (1H, d, J = 2 Hz, C-3'-H), 7.79 (1H, d, J = 9 Hz, C-6'-H), 12.68 (1H, s, C-5-OH).

Preparation of 8-geranylnorartocarpetin (4) and 6-geranylnorartocarpetin (2) from 10b

A mixture of 10b (765 mg, 1.8 mmol), geranyl bromide (1 ml, 4.6 mmol), and KOH (0.5 g, 8.9 mmol) in methanol (70 ml) was allowed to stand for 3 h. After treated as usual, the reaction product was chromatographed on silica gel with benzene containing increasing amount of acetone as an eluent. The fraction eluted with benzene (530 mg) was purified by preparative the (silica gel, <u>n</u>-hexane-acetone=4:1, CHCl₂ only) to give 8-geranyl-7,2',4'-trimethoxymethylnorartocarpetin (4a, 50 mg, 5%), 6-geranyl-7,2',4'-trimethoxymethylnorartocarpetin (2a, 31 mg, 3%), and the starting material (10b, 236 mg, 41%). The fraction eluted withe benzene-acetone (49:1) (310 mg) was purified preparative tlc (silica gel, n-hexane-acetone=4:1) to give 5-0-geranyl-7,2',4'-tribv methoxymethylnorartocarpetin (11b, 35 mg, 3.5%). A mixture of 4a (16 mg) and 3N HCl (0.5 ml) in methanol (5 ml) was refluxed for 15 min. The mixture was diluted with water (20 ml) and treated as usual. The reaction product was purified with preparative tlc (silica gel, n-hexane-acetone=3:1) to give 4 (6 mg, 50%). A mixture of 2a (20 mg) and 3N HCl (0.5 ml) in methanol (5 ml) was refluxed for 15 min. The mixture was diluted with water (20 ml) and treated as usual. The reaction product was purified by preparative tlc (n-hexane-acetone=2:1) to give 2 (4 mg, 27%). Compound (4a) showed the following data: mp 101 - 103 $^{\circ}$ C (pale yellow needles, crystallized from acetone-methanol). FeCl₂ test: green. Gibbs test: negative. Anal. Calcd for $C_{31}H_{38}O_9 \cdot \frac{1}{2}H_2O$: C, 66.06; H, 6.97. Found: C, 66.18; H, 6.91. EI-Ms, m/z (rel. int.): 555 $[M+1]^+$ (4%), 554 $[M]^+$ (11), 509 (14), 486 (6), 485 (16), 471 (7), 453 (13), 432 (17), 431 (63), 418 (18), 399 (11), 387 (23), 386 (13), 355 (9), 343 (8), 311 (4), 45 (100). ¹H Nmr (CDCl₃, 90 MHz): §1.54, 1.61 (each 3H, br s, C-8"-CH₃), 1.79 (3H, br s, C-3"-CH₂), 1.99 (4H, br s, C-5"-Hx2 and C-6"-Hx2), 3.48 (3H, s, OCH₂OCH₃), 3.51 (6H, s, OCH₂OCH₃) x2), 3.55 (2H, br d, J = 6 Hz, C-1"-Hx2), 5.00 - 5.40 (2H, m, C-2"-H and C-7"-H), 5.22, 5.26, 5.29 (each 2H, s, $0CH_20CH_3$), 6.58 (1H, br s, C-6-H), 6.80 (1H, dd, J = 2 and 9 Hz, C-5'-H), 6.95 (1H, s, $C-3-H), \ \ 6.98 \ \ (1H, \ d, \ J \ = \ 2 \ Hz, \ C-3'-H), \ \ 7.82 \ \ (1H, \ d, \ J \ = \ 9 \ Hz, \ C-6'-H), \ \ 12.72 \ \ (1H, \ s, \ C-5-OH).$ Compound (2a) showed the following data: mp 78 - 81 $^{\circ}$ C (pale yellow needles, crystallized from methanol). FeCl_a test: green. Gibbs test: positive. Anal. Calcd for $C_{a1}H_{a8}O_{a1}$: C, 67.13; H, 6.91. Found: C, 66.87; H, 6.94. EI-Ms, m/z (rel. int.): 555 [M+1]⁺ (12%), 554 [M]⁺ (40), 509 (5), 486 (11), 485 (36), 471 (2), 457 (7), 453 (5), 443 (12), 432 (20), 431 (67), 418 (4), 417 (8), 399 (8), 387 (8), 386 (2), 355 (4), 343 (2), 311 (3), 45 (100). ¹H Nmr (CDCl₂, 90 MHz): **\$**1.58, 1.65 (each 3H, br s, C-8"-CH₂), 1.81 (3H, br s, C-3"-CH₂), 2.00 (4H, br s, C-5"-Hx2 and C-6"-Hx2), 3.42 (2H, br d, J = 7 Hz, C-1"-Hx2), 3.50 (9H, s, $OCH_{3}OCH_{3}x3$), 5.0 - 5.4 (2H, m, C-2"-H and C-7"-H), 5.21 $(2H, s, 0CH_{2}0CH_{3}), 5.28 (4H, s, 0CH_{2}0CH_{3}x2), 6.67 (1H, br s, C-8-H), 6.80 (1H, dd, J = 2 and 9 Hz, 0.20 Hz)$ C-5'-H), 6.93 (1H, d, J = 2 Hz, C-3'-H), 6.94 (1H, s, C-3-H), 7.81 (1H, d, J = 9 Hz, C-6'-H), 12.87 (1H, s, C-5-OH). Compound (11b) was obtained as pale yellow oil and showed the following data. FeCl₂ test: negative. EI_Ms, m/z (rel. int.): 555 [M+1]⁺ (3%), 554 [M]⁺ (7), 485 (7), 472 (5), 457 (4), 418 (48), 403 (7), 387 (7), 386 (9), 341 (13), 149 (6), 139 (6), 137 (17), 121 (10), 93 (50), 69 (68), 45 (100). HR-Ms, $\underline{m/z}$ 554.2521 [M]⁺ (C₃₁H₃₉O_a requires: 554.2516). ¹H Nmr (CDCl₃, 90 MHz): δ 1.60, 1.67 (each 3H, br s, C-8"-CH₃), 1.77 (3H, br s, C-3"-CH₃), 2.18 (4H, br s, C-5"-Hx2 and C-5"-Hx C-6"-Hx2), 3.50 (9H, s, $OCH_{2}OCH_{2}x3$), 4.72 (2H, br d, J = 6 Hz, C-1"-Hx2), 4.95 - 5.20 (1H, m, C-7"-H), 5.20, 5.23, 5.27 (each 2H, s, OCH_2OCH_2), 5.60 (1H, br t, J = 6 Hz, C-2"-H), 6.43 (1H, d, J = 2.5 Hz, C-6-H), 6.69 (1H, d, J = 2.5 Hz, C-8-H), 6.75 (1H, dd, J = 2.5 and 9 Hz, C-5'-H), 6.87 (1H, s, C-3-H), 6.92 (1H, d, J = 2.5 Hz, C-3'-H), 7.76 (1H, d, J = 9 Hz, C-6'-H). Compound (4) showed the following data: mp 260 - 263 °C (pale yellow needles, crystallized from benzene-acetone). FeCl₃ test: olive. EI-Ms, $\underline{m/z}$ (rel. int.): 423 $[M+1]^+$ (12%), 422 $[M]^+$ (42), 379 (1), 365 (5), 353 (47), 339 (15), 337 (13), 325 (4), 311 (10), 299 (100), 286 (22), 219 (14), 165 (17). HR-Ms, m/z 422.1723 $[M]^+$ (C₂₅H₂₆O₆ requires: 422.1729). Uv λ_{max}^{EtOH} nm (log £): 205 (4.24), 252 (3.71), 271 (3.83), 288 (3.57), 355 (3.84). Uv $\lambda_{max}^{\text{EtOH+AlCl}}$ 3: 237 (sh 3.81), 258 (sh 3.74), 279 (3.84), 298 (3.66), 361 (3.84), 397 (3.75). ¹H Nmr (acetone- d_6^{-} , 400 MHz): **\delta1**.50 (3H, br d, J = 0.7 Hz, C-8"-CH₂), 1.56 (3H, br d, J = 1 Hz, C-8"-CH₂), 1.82 (3H, br d, J = 1 Hz, C-3"-CH₂), 1.90 - 2.10 (4H, m, C-5"-Hx2 and C-6"-Hx2), 3.56 (2H, br d, J = 7 Hz, C-1"-Hx2), 5.04 (1H, br t, J = 7 Hz, C-7''-H), 5.30 (1H, br t, J = 7 Hz, C-2''-H), 6.33 (1H, br s, C-6-H), 6.58 (1H, dd, J = 2 and 8.5 Hz. C-5'-H), 6.62 (1H, d, J = 2 Hz, C-3'-H), 7.08 (1H, s, C-3-H), 7.88 (1H, d, J = 8.5 Hz, C-6'-H), 9.58 (3H, br s, OHx2), 13.09 (1H, s, C-5-OH). Compound (2) showed the following data: mp 174 - 177°C (pale yellow prisms, crystallized from benzene-acetone). FeCl₂ test: dark green. EI-Ms, m/z (rel. int.): 423 $[M+1]^+$ (11%), 422 $[M]^+$ (35), 379 (4), 353 (55), 337 (15), 325 (5), 311 (13). 299 (100), 286 (7), 219 (4), 165 (15). HR-Ms, m/z 422.1728 $[M]^+$ ($C_{25}H_{26}O_6$ requires: 422.1729). Uv $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log £): 205 (sh 4.13), 213 (4.16), 252 (3.72), 271 (3.78), 285 (sh 3.60), 351 (3.94). Uv $\lambda_{max}^{\rm EtOH+AlCl}$ 3: 205 (sh 4.15), 215 (4.17), 260 (3.68), 281 (3.76), 292 (3.75), 369 (3.92), 390 (sh 3.85). ¹H Nmr (DMSO-d₆-acetone-d₆=1:2, 400 MHz): δ 1.56 (3H, br s, C-8"-CH₂), 1.61 (3H, br d, J = 1 Hz, C-8"-CH_a), 1.78 (3H, br d, J = 1 Hz, C-3"-CH_a), 1.90 - 2.10 (4H, m, C-5"-Hx2 and C-6"-Hx2), 3.30 (2H, br d, J = 7 Hz, C-1''-Hx2), 5.08 (1H, br t, J = 7 Hz, C-7''-H), 5.27 (1H, br t, J = 7 Hz, C-2"-H), 6.47 (1H, dd, J = 2 and 9 Hz, C-5'-H), 6.55 (1H, br s, C-8-H), 6.59 (1H, d, J = 2 Hz, C-3'-H), 7.77 (1H, d, J = 9 Hz, C-6'-H), 10.02 (1H, br s, OH), 10.65 (2H, br s, OHx2), 13.40 (1H, s, C-5-OH); (acetone-d_ε, 400 MHz):δ13.40 (1H, s, C-5-OH).

ACKNOWLEDGEMENT

We are grateful to Prof. M. Takasugi, Hokkaido University, for his kind donation of spectral data of albanins D and E, and also grateful to Prof. F. Ferrari, Cattolica University, for his kind donation of the sample of "albanin E" isolated from <u>Brosimopsis</u> oblongifolia (Moraceae).

REFERENCES AND NOTES

- Part 4 in the series 'NMR Spectra of Isoprenoid Substituted Phenols.' For Part 3 see reference 3.
- T. Fukai, Q.-H. Wang, M. Takayama, and T. Nomura, Heterocycles, 1990, 31, 373.
- 3. T. Fukai and T. Nomura, Heterocycles, 1990, 31, 1861.
- 4. M. Takasugi, S. Ishikawa, T. Masamune, A. Shirata, and K. Takahashi, 'Abstract Papers of 42nd Annual Meeting of the Chemical Society of Japan,' p. 352, Sept., 1980, Sendai, Japan.
- A. Shirata, K. Takahashi, M. Takasugi, S. Nagao, S. Ishikawa, S. Ueno,
 L. Muñoz, and T. Masamune, <u>Sanshi Shikenjo Hokoku (Bull. Sericul. Exp. Sta.</u>),
 1982, 28, 793.
- 6. ¹H Nmr and uv spectral data of albanins D and E were donated by Prof. M.

.

Takasugi, Hokkaido University.

- F. Ferrari, I. Messana, and M. do Carmo Mesquita de Araujo, <u>Planta Med.</u>, 1989, 55, 70.
- Authentic sample of "albanin E" from <u>B. oblongifolia</u> was danated by Prof.
 F. Ferrari, Cattolica University.
- 9. T. Fukai and T. Nomura, Phytochemistry, 1989, 27, 259.
- Y. Komazawa, S. Takeda, K. Hosaka, and H. Mitsuhashi, <u>PCT Int. Appl. WO</u> 88 04,288 (Chem. Abstr., 1989, **110**, 23539).
- 11. E. A. Sherif, A. Lslam, and M. Krishnamurti, Indian J. Chem., 1982, 21B, 478.
- 12. R. L. Edwards and I. Mir, J. Chem. Soc. (C), 1967, 411.
- Y. Hano, Y. Matsumoto, K. Shinohara, J.-Y. Sun, and T. Nomura, <u>Heterocycles</u>, 1990, **31**, 1339.
- T. Nomura, <u>Fortschr. Chem. Org. Naturst.</u>, 1988, 53, 87 and references cited therein.
- 15. Commercial reagents (Aldrich Chem. Co. or Tokyo Kasei Kyogo Co.).
- E. A. Sherif, R. K. Gupta, and M. Krishnamurti, <u>Tetrahedron Lett.</u>, 1980, 21, 641.
- 17. T. Fukai, Q.-W. Wang, and T. Nomura, Phytochemistry, in press.
- 18. M. L. Barrett, A. M. Scutt, and F. J. Evans, Experientia, 1986, 42, 452.
- 19. L. Crombie and W. M. L. Crombie, J. Chem. Soc., Perkin Trans. 1, 1982, 1455.
- 20. T. Kinoshita, U. Sankawa, T. Takuma, K. Asahi, and N. Takahashi, <u>Chem. Pharm.</u> <u>Bull.</u>, 1985, 33, 4109.
- 21. Y. Hano, A. Hanaoka, K. Kimura, and T. Nomura, 'Abstract Papers of the 37th Annual Meeting of the Japanese Society of Pharmacognosy,' p. 3, Nov., 1990, Chiba, Japan.
- P. V. Radhakrishnan, A. V. Rama Rao, and K. Venkataraman, <u>Tetrahedron Lett.</u>, 1965, 663.

Received, 7th January, 1991

510