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Abstract - Treatment of 2.3-dihydro-2-methyl-3-phenyl-1H- 

pyrazino[3,4,5-cd]indolizine 2-oxides (5) with trifluoroacetic anhydride 

gave new heterocyclic six-membered betaines (6)  which underwent 1,3- 

dipolar cycloaddition reaction with dimethyl acetylenedicarboxylate and 

maleimides in hot toluene to yield the corresponding cycloadducts (7) and 

(8). Treatment of the maleimide adducts (8) with p-toluenesulfonic acid 

in boiling acetic acid gave the [2.3.4]cyclazines (9). 

[2.3.4]Cyclazines.I characterized as N-bridged [12]annulenes, were first synthesized in 

1973 by cyclizatiou of diethyl (4-0x0-4H-3a-aza-3-azulenylmethylene)succinate2 and 

later by ring-opening of cyclobuta[al[2.2.3]cyclazines.~ In this communication we 

report a new entry to the [2.3.4]cyclazines ( 9 )  which involves a 1,3-dipolar 

cycloaddition of maleimides to the betaines (6)  followed by acid treatment of the 

cycloadducts (8).4 

Reaction of l-phenacyl-2-(1,3-dioxolan-2-yl)pyridinium bromide (1). prepared from 

2-(1,3-dioxolan-2-yl)pyridine~ and phenacyl bromide in boiling acetonitrile in 90% 

yield, with dimethyl acetylenedicarboxylate or methyl propiolate in the presence of 

potassium carbonate in tetrahydrofuran at room temperature gave methyl 3-  

benzoyl-5-(1,3-dioxolan-2-yl)indolizine-l-carboxylates (2)(a; 59%. b; 52%). The 
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indolizines ( 2 a , b )  were deprotected with 10% hydrochloric acid to afford the 

aldehydes (3)(a; 92%. b; 92%). The aldehydes (3a ,b)  were converted by reductive 

amination with methylamine and sodium cyanoborohydride in methanol into the 

tricyclic amines (4a,b) which were, without purification, led to the corresponding N-  

oxides (5)(a; 58%. b; 73%) by m-chloroperbenzoic acid oxidation (in CH2C12, O T ,  10-20 

min)(Scheme 1). 

Scheme 1 

R-C-C-COOMe - hneooc 
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Treatment of the N-oxides (5a ,b )  with trifluoroacetic anhydride in dichloromethane 

at O°C gave a purple solution, implying the formation of the betaines (6),4 T h e  

formation of 6 was further confirmed by trapping 6 with dimethyl acetylene- 

dicarboxylate. Thus, after a solution of dimethyl acetylenedicarboxylate in toluene 

was added to the purple solution of the betaines ( 6 a , b ) ,  dichloromethane was 

evaporated off by heating the reaction mixture under argon and the toluene solution 

was refluxed for 1 h to afford the corresponding adducts (7)(a; 53%. b; 33%). Similar 

treatment of 5 a , b  with N-methyl- or N-phenylmaleimide yielded the corresponding 

adducts (8a -d )  as a mixture of exo and endo isomers, which was separated by silica 

gel column chromatography.6.7 These results were summarized in Table 1. 

In order to convert the adducts (8 )  into the [2.3.4]cyclazine derivatives (9) .  N -  

methylation of 8 a  with methyl iodide or methyl trifluoromethanesulfonate under 

several conditions was attempted without success.4 However, treatment of 8a (as  

a mixture of the exo and endo isomers) with 3 molar equivalents of p-toluenesulfonic 
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acid in boiling acetic acid gave directly the desired [2.3.4]cyclazines (9a)  i n  43% yield. 

Similar treatment of 8 b - d  gave the corresponding [2.3.4lcyclazines ( 9 b - d )  in the 

yields as shown in Table 2. The structures of the [2.3.4]cyclazines (9) were deduced 

from the spectroscopic evidence.8 Of particular interest is that the six-membered 

ring proton signals of 9a are shifted ca. 1 ppm to higher field than those of either the 

e x o -  or e n d o - a d d u c t  ( 8 a ) .  Such higher field shift is characteristic of the 

[2.3.4]cyclazine ring ~ ~ s t e m . 2 . 3  Further discussion of the spectra will be presented 

in a future publication. 

In summary, we have found a new route to the [2.3.4]cyclazines based on the 1.3- 

dipolar cycloaddition reaction of the six-membered betaines (6). 

Scheme 2 

a;R=COOMe 
b ; R = H  

p-Ts 0 H 
N-R' - 

Table 1. 1.3-Dipolar cycloaddition of 6 
with maleimides 

8 R R' Yield(%) (exo:endo) 

a COOMe M e  53 (9.5 : 1) 

b COOMe P h  42 (13 : 1) 

c H M e  48 (15 : 1) 

d H P h  36 (11 : 1 ) 

MeOOC&COOMe - N-Me 

R 
Ph COOMe 

7a ,b  

MeOOC%o R '  p - 
Ph N-A' 

n 

Table 2. Preparation of the 
[2.3.4]cyclazines (9) 

9 R R' Yield(%) 

a COOMe Me 43 

b COOMe Ph 37 

c H Me 82 

d H P h 8 1 
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6. Both the exo- and endo-adducts (8a) were stable and unchanged after refluxing in 

toluene for 1 h. 

7. endo-8a: mp 204-205°C (from methanol); ir (v, cm-1, nujol) 1675, 1710, 1740, 

and 1785; l ~ - n m r  (6, ppm, 200 MHz, CDC13) 2.31 (3H, s, N-Me), 2.49 (3H, s, N-Me), 

3.27 and 3.73 (2 x 3H, 2 x s, 2 x COOMe), 4.13 (lH, dd, J=10, 8 Hz, H-7). 4.39 (lH, d, 

J=10 Hz, H-8). 4.66 (lH, d, J=8 Hz, H-6), 6.62 (lH, br d, J=7 Hz, H-5). 7.05 (lH, dd, 

J=9, 7 Hz, H-4). 7.3-7.8 (5H, m, Ph), and 7.91 (lH, dd, J=9, 1 Hz, H-3). 

exo-8a: mp 239-240°C (dec.)(from methanol); ir (v, cm-1, nujol) 1685, 1735 and 

1780; lH-nmr (6, ppm, 200 MHz, CDC13) 2.09 (3H, s, N-Me), 2.75 (3H, s, N-Me), 

3.41 (lH, d, J=8 Hz, H-7). 3.55 (3H, s, COOMe), 3.75 (lH, d, J=8 Hz, H-8), 3.83 (3H, s, 

COOMe), 4.74 (lH, s, H-6). 6.79 (lH, dd, J=7, 1 Hz, H-5), 7.14 (lH, dd, 3=9, 7 Hz, H-4), 

7.3-7.7 (SH, m, Ph), and 8.05 (lH, dd, J=9, 1 Hz, H-3). 

8. 9a: mp above 250°C (from benzene); ir (v, cm-1, CHC13) 1670, 1700, and 1745; 

l ~ - n t n r  (6, ppm, 200 MHz, CDC13) 2.75 (3H, s, N-Me), 3.05 and 3.55 (2 x 3H, 2 x s, 

2 x COOMe), 5.15 (lH, dd, J=7, 1 Hz, H-5), 5.22 (lH, s, H-6), 5.98 (lH, dd, J=9, 7 Hz, 

H-4). 6.95 (lH, dd, J=9, 1 Hz, H-3). and 7.0-7.4 (SH, m, Ph). 
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