# SYNTHESIS OF 2,5-DISUBSTITUTED 3-(4-CHLOROBENZOYL)-2,3-DIHYDRO-2-METHYL-1,3,4-THIADIAZOLE DERIVATIVES

Kouhei Toyooka,\* Yoshiyuki Takeuchi, Masayuki Shibuya, and Seiju Kubota Faculty of Pharmaceutical Sciences, University of Tokushima, Sho-machi 1, Tokushima 770, Japan

Abstract <u>2-Substituted 3-(4-chlorobenzoyl)-2,3-dihydro-5-methylthio-1,3,4-</u> thiadiazoles (3) were used as key intermediates to prepare 2,5-disubstituted 3-(4chlorobenzoyl)-2,3-dihydro-1,3,4-thiadiazoles (4) and (7).

We have previously reported that the reaction of aldehyde thiosemicarbazones and aldehyde methylthio(thiocarbonyl)hydrazones with acid chlorides gave 3-acyl-5-(acylamino)-2,3-dihydro-1,3,4-thiadiazoles<sup>1</sup> and 3-acetyl-2,3-dihydro-5-methylthio-1,3,4-thiadiazole,<sup>2</sup> respectively. We have also reported that nucleophilic substitution of the methylsulfinyl group of 3-acetyl-5-methylsulfinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole gave 5-substituted 3-acetyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole gave 5-substituted 3-acetyl-2-phenyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-acetyl-3-

We now report the application of these methods for the synthesis of novel 2,3-dihydro-1,3,4thiadiazole derivatives.

This paper describes the synthesis of 2,5-disubstituted 3-(4-chlorobenzoyl)-2,3-dihydro-2-methyl-1,3,4-thiadiazoles (4a-c) and (7a-c).

The synthesis of compounds (4a-c) and (7a-c) was achieved by starting with the key compounds (3a-c). These were prepared by the reaction of 4-chlorobenzoyl chloride with the hydrazones (2a-c) obtained by the condensation of methylthio(thiocarbonyl)hydrazide (1) with ethyl pyruvate, ethyl acetoacetate, and ethyl levulinate, respectively.

Structure proof of **3a-c** was based upon satisfactory spectral data. In addition to correct molecular formula obtained by high-resolution mass spectrometry, the <sup>13</sup>C-nmr spectra clearly showed a

signal at 80.62-86.28 ppm which is assigned to the quaternary carbon in the 2,3-dihydro-1,3,4thiadiazole ring.<sup>4</sup>



The first series of target compounds (4a-c) were then obtained by hydrolysis of 3a-c with potassium hydroxide in aqueous methanol at room temperature. The second series (7a-c) were synthesized as shown in the Scheme. Starting with 3a-c, 2,3-dihydro-5-methylsulfinyl-1,3,4-thiadiazoles (5a-c) were obtained by oxidation with 1.1 mol eq. of *m*-chloroperbenzoic acid (*m*-CPBA) at room temperature as diastereoisomeric mixtures in the ratio of 3:2. This ratio was determined by <sup>1</sup>H-nmr spectroscopy measuring the integrated intensities of the C-2 methyl signals at  $\delta$  2.20-2.32 ppm. Repeated attempts to obtain pure isomers by column chromatography were unsuccessful.

1814

Nucleophilic substitution reactions of the diasteroisomeric mixture (5a-c) were examined, since the sulfinyl group is known to be a good leaving group.<sup>3,5,6</sup> Treatment of diastereomeric 5a-c with thiophenol in tetrahydrofuran (THF) in the presence of sodium hydride at room temperature for 10 min gave the corresponding 5-phenylthio drivatives (6a-c) in moderate yields. These were hydrolyzed with potassium hydroxide in aqueous methanol to give the target carboxylic acids (7a-c).

The analytical and spectral data of compounds (6a-c), (4a-c) and (7a-c) are shown in Tables III and IV, respectively.

#### EXPERIMENTAL

Melting points were determined by the capillary method and are uncorrected. Ir spectra were recorded on a Hitachi 215 spectrophotometer. <sup>1</sup>H-Nmr spectra were measured with a JEOL JNM-PMX 60<sub>SI</sub> spectrometer and <sup>13</sup>C-nmr spectra with a JEOL JMS FX-200 spectrometer using tetramethylsilane as an internal reference. Mass spectra were recorded on a JEOL D-300 instrument. Column chromatography was performed on silica gel (K-100-S, from Katayama Chemicals).

Ethyl pyruvate methylthio(thiocarbonyl)hydrazone (2a)

Compound (2a) was prepared by literature method.7

Ethyl acetoacetate methylthio(thiocarbonyl)hydrazone (2b)

Compound (2b) was prepared by literature method.8

#### Ethyl levulinate methylthio(thiocarbonyl)hydrazone (2c)

A mixture of 1 (3.38 g, 27.70 mmol), ethyl levulinate (3.94 ml, 27.77 mmol), and 47 % hydrobromic acid (1 drop) in EtOH (60 ml) was stirred at room temperature for 1.5 h. The resulting precipitate was collected by filtration and recrystallized from EtOH to give **2c** (4.27 g, 62 %); mp 99-100 °C. Ir(KBr) 3220 (NH), 1725 (CO) cm<sup>-1</sup>. <sup>1</sup>H-Nmr(CDCI<sub>3</sub>)  $\delta$  1.32 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.00 (3H, s, CH<sub>3</sub>), 2.65 (3H, s, SCH<sub>3</sub>), 2.74 (4H, s, CH<sub>2</sub>CH<sub>2</sub>), 4.22 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 9.89 (1H, br s, NH). Ms *m/z* 248 (M<sup>+</sup>). *Anal.* Calcd for C<sub>9</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub>: C,43.52; H,6.49; N,11.28. Found: C,43.42; H,6.56; N,11.29.

1815

### Reaction of 2a-c with 4-Chlorobenzoyl Chloride

A solution of 4-chlorobenzoyl chloride (0.58 ml, 4.56 mmol) in CHCl<sub>3</sub> (4 ml) was added to a stirred solution of **2a** (500 mg, 2.27 mmol) in CHCl<sub>3</sub> (20 ml) at room temperature. After being refluxed for 4 h, the mixture was concentrated under reduced pressure. The residue was chromatographed on silica gel to give 3-(4-chlorobenzoyl)-2-ethoxycarbonyl-2,3-dihydro-2-methyl-5-methylthio-1,3,4-thiadiazole **3a** (679 mg, 83 %) as an oil. 2-Substituted 3-(4-chlorobenzoyl)-2,3-dihydro-2-methyl-5-methylthio-1,3,4-thiadiazoles **(3b)** and **(3c)** were prepared in a similar manner to that described for compound **(3a)**. Yields and analytical and spectral data for compounds **(3a-c)** are given in Tables I and II.

#### Hydrolysis of 3a-c

A solution of 85 % KOH (899 mg, 13.62 mmol) in water (20 ml) was added to a stirred solution of **3a** (1.63 g, 4.55 mmol) in MeOH (50 ml) at room temperature. After being stirred for 6 h, the mixture was acidified with 10 % HCl, and extracted with ethyl acetate. The combined extracts were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and evaporated under reduced pressure. The residue was recrystallized from isopropyl ether to give 3-(4-chlorobenzoyl)-2,3-dihydro-2-hydroxycarbonyl-2-methyl-5-methylthio-1,3,4-thiadiazole **4a** (1.29 g, 86 %). 2-Substituted 3-(4-chlorobenzoyl)-2,3-dihydro-2-methyl-5-methylthio-1,3,4-thiadiazoles **(4b)** and **(4c)** were prepared in a similar manner to that described for compound **(4a)**. Yields, melting points, recrystallization solvents, and analytical and spectral data for compounds **(4a-c)** are given in Table IV.

# 3-(4-Chlorobenzoyl)-2-ethoxycarbonyl-2,3-dihydro-2-methyl-5-methylsulfinyl-1,3,4thiadiazole (5a)

A solution of 80 % *m*-CPBA (1.08 g, 5.01 mmol) in CHCl<sub>3</sub> (25 ml) was added dropwise to a stirred solution of **3a** (1.63 g, 4.55 mmol) in CHCl<sub>3</sub> (30 ml) at room temperature. After being stirred at room temperature for 1 h, the mixture was neutralized with 5 % aqueous sodium hydrogen carbonate and extracted with CHCl<sub>3</sub>. The combined extracts were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and evaporated under reduced pressure. The residue was chromatographed on a silica gel column to give 2,3-dihydro-1,3,4-thiadiazole (**5a**) as an inseparable diastereomeric mixture (1.47 g, 86 %). Ir(neat) 1750, 1740, 1665, 1655 (CO), 1090, 1070 (SO) cm<sup>-1</sup>. Major isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.31 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.27 (3H, s, CH<sub>3</sub>), 2.97 (3H, s, SOCH<sub>3</sub>), 4.39 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.38 (2H, dd, *J*=3, 9 Hz, ArH), 7.73 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-

nmr(CDCl<sub>3</sub>)  $\delta$  1.31 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.32 (3H, s, CH<sub>3</sub>), 2.93 (3H, s, SOCH<sub>3</sub>), 4.39 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.38 (2H, dd, *J*=3, 9 Hz, ArH), 7.73 (2H, dd, *J*=3, 9 Hz, ArH). Ms *m/z* 374, 376 (M<sup>+</sup>). Calcd for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>ClS<sub>2</sub> 374.0161, Found 374.0148.

# 3-(4-Chlorobenzoyl)-2-ethoxycarbonylmethyl-2,3-dihydro-2-methyl-5-methylsulfinyl-1,3,4-thiadiazole (5b)

Compound **(5b)** was prepared from **3b** (1.26 g, 3.38 mmol) and 80 % *m*-CPBA (800 mg, 3.71 mmol) in a similar manner to that described for compound **(5a)**. Yield 1.15 g (88 %). Ir(neat) 1735, 1725, 1665, 1655 (CO), 1090, 1075 (SO) cm<sup>-1</sup>. Major isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.28 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.21 (3H, s, CH<sub>3</sub>), 2.90 (3H, s, SOCH<sub>3</sub>), 3.63 (2H, d, *J*=9 Hz, CH<sub>2</sub>), 4.20 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.32 (2H, dd, *J*=3, 9 Hz, ArH), 7.62 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.28 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.25 (3H, s, CH<sub>3</sub>), 2.90 (3H, s, SOCH<sub>3</sub>), 3.61 (2H, d, *J*=7 Hz, CH<sub>2</sub>), 4.17 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.32 (2H, dd, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.32 (2H, dd, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.32 (2H, dd, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.25 (3H, s, CH<sub>3</sub>), 2.90 (3H, s, SOCH<sub>3</sub>), 3.61 (2H, d, *J*=7 Hz, CH<sub>2</sub>), 4.17 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.32 (2H, dd, *J*=3, 9 Hz, ArH), 7.62 (2H, dd, *J*=3, 9 Hz, ArH). Ms m/z 388, 390 (M+). Calcd for C<sub>15</sub>H<sub>17</sub>N<sub>2</sub>O<sub>4</sub>ClS<sub>2</sub> 388.0324, Found 388.0298.

# 3-(4-Chlorobenzoyl)-2-ethoxycarbonylethyl-2,3-dihydro-2-methyl-5-methylsulfinyl-1,3,4-thiadiazole (5c)

Compound (5c) was prepared from 3c (2.22 g, 5.74 mmol) and 80 % *m*-CPBA (1.36 g, 6.30 mmol) in a similar manner to that described for compound (5a). Yield 2.07 g (90 %). Ir(neat) 1740, 1730, 1665, 1660 (CO), 1090, 1075 (SO) cm<sup>-1</sup>. Major isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.26 (3H, s, CH<sub>3</sub>), 2.92 (3H, s, SOCH<sub>3</sub>), 1.90-3.54 (4H, m, CH<sub>2</sub>CH<sub>2</sub>), 4.20 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.20 (3H, s, CH<sub>2</sub>CH<sub>3</sub>), 2.92 (3H, s, SOCH<sub>3</sub>), 1.90-3.54 (4H, m, CH<sub>2</sub>CH<sub>2</sub>), 4.20 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.20 (3H, s, CH<sub>3</sub>), 2.92 (3H, s, SOCH<sub>3</sub>), 1.90-3.54 (4H, m, CH<sub>2</sub>CH<sub>2</sub>), 4.20 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH), 7.70 (2H, dd, *J*=3, 9 Hz, ArH). Minor isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (2H, q, *J*=7 Hz, CH<sub>2</sub>CH<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH). The isomer isomer isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>), 7.39 (2H, dd, *J*=3, 9 Hz, ArH). ArH). Minor isomer isomer; <sup>1</sup>H-nmr(CDCl<sub>3</sub>)  $\delta$  1.26 (2H, q) (M<sup>2</sup>). Calcd for C<sub></sub>

### Reaction of 5a-c with Thiophenol in the Presence of Sodium Hydride

A suspension of sodium hydride (178 mg, 4.45 mmol, 60 % dispersion in oil, washed with ether) in anhydrous THF (10 ml) was added dropwise to a stirred solution of thiophenol (0.46 ml, 4.48 mmol) in anhydrous THF (10 ml) at 0 °C. After being stirred at room temperature for 10 min, the mixture was treated dropwise with a solution of **5a** (1.67 g, 4.46 mmol) in anhydrous THF (30 ml). After 1 h at room temperature, the mixture was neutralized with aqueous acetic acid and extracted with CHCl<sub>3</sub>. The combined extracts were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and

evaporated under reduced pressure. The residue was chromatographed on a silica gel column to give 3-(4-chlorobenzoyl)-2-ethoxycarbonyl-2,3-dihydro-2-methyl-5-phenylthio-1,3,4-thiadiazole (6a) (1.25 g, 67 %) as an oil. 2-Substituted 3-(4-chlorobenzoyl)-2,3-dihydro-2-methyl-5-phenylthio-1,3,4-thiadiazoles (6b) and (6c) were prepared in a similar manner to that described for compound (6a). Yields and analytical and spectral data for compounds (6a-c) are given in Table III.

#### Hydrolysis of 6a-c

3-(4-Chlorobenzoyl)-2,3-dihydro-2-hydroxycarbonyl-2-methyl-5-phenylthio-1,3,4-thiadiazole (7a) was prepared from 6a (1.12 g, 2.66 mmol) and 85 % KOH (528 mg, 8.00 mmol) in a similar manner to that described for compound (4a). Yield 764 mg (73 %). 2-Substituted 3-(4-chlorobenzoyl)-2,3-dihydro-2-methyl-5-phenylthio-1,3,4-thiadiazoles (7b) and (7c) were prepared in a similar manner to that described for compound (4a). Yields, melting points, recrystallization solvents, and analytical and spectral data for compounds (7a-c) are given in Table IV.

Table I. Spectral data for 3a-c

| Compd<br>No. | Yield<br>(%) | Ir cm <sup>-1</sup><br>(neat)<br>CO | Formula                                                                        | Analysis <sup>a</sup><br>Calcd(Found) | Ms<br><i>m\/z</i><br>(M <sup>+</sup> ) |
|--------------|--------------|-------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| 3 a          | 83           | 1740<br>1645                        | C <sub>14</sub> H <sub>15</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 358.0212<br>(358.0201)                | 358<br>360                             |
| 3 b          | 84           | 1730<br>1645                        | C <sub>15</sub> H <sub>17</sub> N <sub>2</sub> O <sub>3</sub> CIS <sub>2</sub> | 372.0369<br>(372.0386)                | 372<br>374                             |
| 3 c          | 98           | 1730<br>1640                        | C <sub>16</sub> H <sub>19</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 386.0526<br>(386.0495)                | 386<br>388                             |

<sup>a</sup> Determined by high-resolution mass spectrometry. Upper figure, Calcd for M+; lower figure found.

Table II. <sup>1</sup>H-Nmr and <sup>13</sup>C-nmr spectral data for **3a-c**.

| Compd<br>No. | <sup>1</sup> H-Nmr (CDCl₃)δ<br>( <i>J</i> =Hz)                                                                                                                                                                                                                                                               | <sup>13</sup> C-Nmr (CDCi <sub>3</sub> )δ                                                                                                                                                                                                                                                        |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3a           | 1.32(3H,t,J=7,CH2C <u>H</u> 3),2.25(3H,s,CH3),<br>2.53(3H,s,SCH <sub>3</sub> ),4.32(2H,q,J=7,C <u>H</u> 2CH <sub>3</sub> ),<br>7.35(2H,dd,J=3,9,ArH),7.83(2H,dd,J=3,9,<br>ArH)                                                                                                                               | 13.99(q,CH <sub>2</sub> CH <sub>3</sub> ),15.62(q,SCH <sub>3</sub> ),24.73(q,CH <sub>3</sub> ),<br>62.60(t, <u>C</u> H <sub>2</sub> CH <sub>3</sub> ),80.62(s,C-2),127.80(d),131.08(d),<br>132.56(s),137.32(s)(aromatic C),148.13(s,C-5),<br>165.59(s,CO),168.27(s,CO)                           |  |  |
| 3 b          | 1.26(3H,t, <i>J</i> =7,CH <sub>2</sub> C <u>H</u> <sub>3</sub> ),2.19(3H,s,CH <sub>3</sub> ),<br>2.44(3H,s,SCH <sub>3</sub> ),3.67(2H,d, <i>J</i> =8,CH <sub>2</sub> ),<br>4.21(2H,q, <i>J</i> =7,C <u>H</u> <sub>2</sub> CH <sub>3</sub> ),7.35(2H,dd,<br><i>J</i> =3,9,ArH),7.74(2H,dd, <i>J</i> =3,9,ArH) | 14.10(q,CH <sub>2</sub> CH <sub>3</sub> ),15.21(q,SCH <sub>3</sub> ),27.48(q,CH <sub>3</sub> ),<br>44.09(t,CH <sub>2</sub> ),60.91(t, <u>C</u> H <sub>2</sub> CH <sub>3</sub> ),82.20(s,C-2),127.60<br>(d),130.81(d),134.23(s),136.71(s)(aromatic C),<br>149.94(s,C-5),166.44(s,CO),169.71(s,CO) |  |  |

1818

Table II (Continued). <sup>1</sup>H-Nmr and <sup>13</sup>C-nmr spectral data for **3a-c**.

| Compd<br>No. | <sup>1</sup> H-Nmr (CDCl <sub>3</sub> )δ<br>( <i>J</i> =Hz)                                                                                                                                                                                                               | <sup>13</sup> C-Nmr (CDCl <sub>3</sub> )δ                                                                                                                                                                                                                                                                                                                      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3c           | 1.26(3H,t,J=7,CH <sub>2</sub> CH <sub>3</sub> ),2.19(3H,s,CH <sub>3</sub> ),<br>2.45(3H,s,SCH <sub>3</sub> ),2.23-3.45(4H,m,CH <sub>2</sub> CH <sub>2</sub> ),<br>4.20(2H,q,J=7,C <u>H</u> <sub>2</sub> CH <sub>3</sub> ),7.37(2H,dd,J=<br>3,9,ArH),7.75(2H,dd,J=3,9,ArH) | 14.16(q,CH <sub>2</sub> CH <sub>3</sub> ),15.24(q,SCH <sub>3</sub> ),28.18(q,CH <sub>3</sub> ),<br>30.37(t,CH <sub>2</sub> CH <sub>2</sub> ),34.37(t,CH <sub>2</sub> CH <sub>2</sub> ),60.56(t <u>.C</u> H <sub>2</sub> CH <sub>3</sub> ),<br>86.28(s,C-2),127.60(d),130.84(d),134.05(s),136.74<br>(s)(aromatic C),148.45(s,C-5),166.03(s,CO),172.10<br>(s,CO) |

Table III. Spectral data for 6a-c.

| Compd<br>No. | Yield<br>(%) | Ir cm <sup>-1</sup><br>(neat)<br>CO | <sup>1</sup> H-Nmr (CDCl₃)δ<br>(الله=Hz)                                                                                                                                                                                                                    | Formula                                                                        | Analysis <sup>a</sup><br>Calcd(Found) | Ms<br><i>m∕z</i><br>(M+) |
|--------------|--------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|--------------------------|
| 6 a          | 67           | 1755<br>1660                        | 1.33(3H,t, <i>J</i> =7,CH <sub>2</sub> C <u>H</u> <sub>3</sub> ),2.19(3H,s,CH <sub>3</sub> ),<br>4.33(2H,q, <i>J</i> =7,C <u>H</u> <sub>2</sub> CH <sub>3</sub> ),7.34(2H,dd, <i>J</i> =3,9,<br>ArH),7.82(2H,dd, <i>J</i> =3,9,ArH),7.24-7.98<br>(5H,m,ArH) | C <sub>19</sub> H <sub>17</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 420.0369<br>(420.0367)                | 420<br>422               |
| 6 b          | 57           | 1735<br>1650                        | 1.24(3H,t, <i>J</i> =7,CH₂C <u>H</u> ₃),2.15(3H,s,CH₃),<br>3.66(2H,d, <i>J</i> =6,CH₂),4.21(2H,q, <i>J</i> =7,<br>C <u>H</u> ₂CH₃),7.19-7.70(9H,m,ArH)                                                                                                      | C <sub>20</sub> H <sub>19</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 434.0526<br>(434.0548)                | 434<br>436               |
| 6 C          | 82           | 1740<br>1655                        | 1.22(3H,t, <i>J</i> =7,CH <sub>2</sub> C <u>H</u> 3),2.09(3H,s,CH3),<br>2.04-3.33(4H,m,CH <sub>2</sub> CH <sub>2</sub> ),4.15(2H,q, <i>J</i> =7,<br>С <u>H</u> 2CH3),7.08-7.85(9H,m,ArH)                                                                    | C21H21N2O3CIS2                                                                 | 448.0682<br>(448.0686)                | 448<br>450               |

<sup>a</sup> Determined by high-resolution mass spectrometry. Upper figure, Calcd for M+; lower figure found.

Table IV. Spectral data for 4a-c and 7a-c.

| Compd<br>No. | Yie<br>(% | ld mp(°C)<br>) (a)              | Ir crr<br>(KB<br>OH | r <sup>-1</sup><br>r)<br>CO | <sup>1</sup> H-Nmr (DMSO-d <sub>6</sub> )δ<br>(J=Hz)                                                                                                                                                        | Formula                                                                        | A<br>Calo<br>C  | nalysi<br>cd(Fou<br>H | s<br>ind)<br>N | Ms<br><i>m∕z</i><br>(M+) |
|--------------|-----------|---------------------------------|---------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|-----------------------|----------------|--------------------------|
| 4 a          | 86        | 161-163<br>(isopropyl<br>ether) | 3100-2600           | 1750<br>1605                | 2.14(3H,s,CH3),2.53(3H,s,<br>SCH3),7.49(2H,dd, <i>J</i> =3,9,<br>ArH),7.80(2H,dd, <i>J</i> =3,9,ArH)<br>11.00-14.00(1H,br s,COOH)                                                                           | C <sub>12</sub> H <sub>11</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 43.57<br>(43.73 | 3.35<br>3.38          | 8.47<br>8.33)  | 330<br>332               |
| 4 b          | 47        | 137-139<br>(50%MeOI             | 3100-2600<br>H)     | 1710<br>1645                | 2.07(3H,s,CH <sub>3</sub> ),2.46(3H,s,<br>SCH <sub>3</sub> ),3.67(2H,d, <i>J</i> =8,CH <sub>2</sub> ),<br>7.51(2H,dd, <i>J</i> =3,9,ArH),<br>7.76(2H,dd, <i>J</i> =3,9,ArH),<br>10.00-12.50(1H,br s,COOH)   | C <sub>13</sub> H <sub>13</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 45.28<br>(45.32 | 3.80<br>3.80          | 8.12<br>8.11)  | 344<br>346               |
| 4 c          | 76        | 142-143<br>(50%EtOH             | 3200-2500<br>)      | 1710<br>1640                | 2.14(3H,s,CH <sub>3</sub> ),2.48(3H,s,<br>SCH <sub>3</sub> ),2.25-3.12(4H,m,<br>CH <sub>2</sub> CH <sub>2</sub> ),7.50(2H,dd, <i>J</i> =3,9,<br>ArH),7.77(2H,dd, <i>J</i> =3,9,<br>ArH),12.40(1H,br s,COOH) | C14H15N2O3CIS2                                                                 | 46.86<br>(46.87 | 4.21<br>4.11          | 7.81<br>7.72)  | 358<br>360               |

<sup>a</sup> Solvent of recrystallization

Table IV(Continued). Spectral data for 4a-c and 7a-c.

| Compd<br>No. | Yie<br>(%) | id mp(°C<br>(a)    | ) Ircm<br>(KB<br>OH | r)<br>CO                  | <sup>1</sup> H-Nmr (DMSO-d <sub>6</sub> )δ<br>( <i>J</i> =Hz)                                                                                                | Formula                                                                        | A<br>Calo<br>C  | nalysi:<br>xd(Fou<br>H | s<br>Ind)<br>N         | Ms<br><i>m∕z</i><br>(M+) |
|--------------|------------|--------------------|---------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|------------------------|------------------------|--------------------------|
| 7a           | 73         | 165-166<br>(50%EtO | 3100-2600<br>H)     | 1755<br>1600              | 2.11(3H,s,CH <sub>3</sub> ),7.45(2H,dd,<br><i>J</i> =3,9,ArH),7.72(2H,dd, <i>J</i> =<br>3,9,ArH),7.45-7.75(5H,m,<br>ArH),9.50-13.50(1H,br s,<br>COOH)        | C <sub>17</sub> H <sub>13</sub> N <sub>2</sub> O <sub>3</sub> ClS <sub>2</sub> | 51.97<br>(52.08 | 3.34<br>3.16           | 7.13<br>7.11)          | 392<br>394               |
| 7 b          | 60         | 134-136<br>(50%EtO | 3100-2600<br>H)     | 1725<br>1610              | 2.03(3H,s,CH <sub>3</sub> ),3.58(2H,d,<br><i>J</i> =6,CH <sub>2</sub> ),7.33-7.69(7H,m,<br>ArH),7.96(2H,dd, <i>J</i> =3,9,ArH),<br>10.00-12.50(1H,br s,COOH) | C <sub>18</sub> H <sub>15</sub> N <sub>2</sub> O <sub>3</sub> CIS <sub>2</sub> | 51.13<br>(52.18 | 3.72<br>3.59           | 6.88<br>6.84)          | 406<br>408               |
| 7 c          | 41         |                    | 3200-2600           | 1710 <sup>b</sup><br>1640 | 2.06(3H,s,CH <sub>3</sub> ),1.91-2.90<br>(4H,m,CH <sub>2</sub> CH <sub>2</sub> ),7.28-7.82<br>(9H,m,ArH),10.50-13.00(1H,<br>br s,COOH)                       | C <sub>19</sub> H <sub>17</sub> N <sub>2</sub> O <sub>3</sub> CIS <sub>2</sub> | 42<br>(43       | 20.036<br>20.036       | 39 <sup>c</sup><br>35) | 420<br>422               |

a Solvent of recrystallization

<sup>b</sup> Neat

<sup>c</sup> Determined by high-resolution mass spectrometry. Upper figure, Calcd for M+; lower figure found.

### REFERENCES

- 1. S. Kubota, Y. Ueda, K. Fujikane, K. Toyooka, and M. Shibuya, J. Org. Chem, 1980, 45, 1473.
- S. Kubota, K. Toyooka, J. Ikeda, N. Yamamoto, and M. Shibuya, J. Chem. Soc., Perkin Trans. 1, 1983, 967.
- 3. S. Kubota, K. Toyooka, M. Shibuya, and Z. Taira, J. Chem. Soc., Perkin Trans. 1, 1986, 1357.
- 4. S. Andreae, E. Schmitz, and H. Seeboth, J. Prakt. Chem., 1986, 328, 205.
- 5. T. Nishio and Y. Omote, Synthesis, 1980, 390
- 6. N. Furukawa, S. Ogawa, T. Kawai, and S. Oae, Tetrahedron Lett., 1983, 24, 3243
- 7. L. E. K. Pedersen, A. Svendsen, and P. D. Klemmensen, Pestic. Sci., 1984, 15, 462.
- 8. J. Sandström, Arkiv. Kemi., 1955, 8, 523.

Received, 24th June, 1991