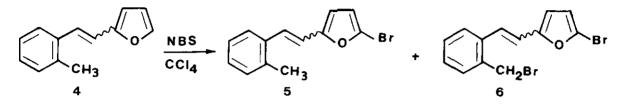
ONE-POT SYNTHESIS OF NEW UNSYMMETRICAL β -HETEROARYL-o-DIVINYLBENZENES Marija Šindler-Kulyk^{*1}, Zdenka Stiplošek¹, Dragana Vojnović¹, Biserka Metelko², and Željko Marinić²

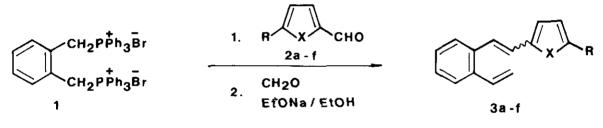
¹Organic Chemistry Department, Faculty of Technology, University of Zagreb, Marulicev trg 20, 41000 Zagreb, Croatia ²Rugjer Boskovic Institute, Zagreb, Croatia

Abstract - By Wittig reaction of o-xylylenebis(triphenylphosphonium bromide) (1) with aldehydes (2) and formaldehyde in the presence of base, unsymmetrically substituted o-divinylbenzenes (3) have been prepared in one pot.

Our interest in photochemical behaviour of $aryl^1$ and $furyl^2$ substituted *o*divinylbenzenes prompted us to develop the synthesis of β -(2-heteroaryl) derivatives (3) and to investigate their spectral properties. The β -phenyl substituted *o*-divinylbenzene, *o*-vinylstilbene, has been prepared earlier.¹ Attempts to apply a similar route to the furan analogs were unsuccessful due to the reactive furan ring. Wittig reaction using diphosphonium salt (1), corresponding aldehydes (2) and formaldehyde seemed to us to be particularly attractive because of its simplicity and good yields.


CH₂PPh₃Br CH₂PPh₃Br Ar-CHO CH₂O EtONa/EtOH

3


2357

RESULTS AND DISCUSSION

The initial approach to these compounds (3) was to introduce the vinyl group via 1-(o-tolyl)-2-(2-furyl) ethene (4)³ transforming the methyl group into the bromomethyl group and subsequently into the phosphonium salt followed by Wittig reaction with formaldehyde. However, by the bromination with <u>N</u>bromosuccinimide (NBS) the substitution in the furan ring primarily took

place and only in case of two equivalents of NBS, beside compound (5) and tarry material, some bromomethyl derivative (6) was identified (less than 20%). In order to expand the furyl analogues of *o*-vinylstilbene we have developed the syntetic method from diphosphonium salt (1) and proved it to

3a: X=O,R=H; b: X=O,R=Me, c: X=O,R=Br; d: X=O,R=p-MePh; e: X=O,R=p-CIPh; f: X=S, R=H

be versatile for preparation of various heterocyclic compounds (3) only by changing reagents (2) without altering synthetic route. Thus, to obtain the desired products with as little as possible byproducts, the key matter was the sequence of addition as well as the equivalent quantity, first of aldehydes (2) and then formaldehyde, both under the basic conditions. After work-up, the products (3a-f, mixture of <u>cis</u>- and <u>trans</u>-isomers) were isolated by chromatography on the silica gel column (Table 1). The small quantities of the formed o-divinylbenzene were easily separated in first fractions whereas β , β '-disubstituted impurities remained on the column. The pure isomers were separated by repeated column chromatography and the structures were determined by their uv, ¹H and ¹³C nmr spectra (Tables 2,3 and 4).

2358

Compd	Isomer	X	R	mp	Ratio (%) ^a	Yield	Ms	Analysis Found(Calcd)	
				°¢	cis:trans	(%)	m/z(M+,%)	СН	
3a	çis	0	H	oil	······································			C ₁₄ H ₁₂ O	
	trans	0	H	oil	30:70	85	196(30)	85.80 -6.08 (85.68)(6.17)	
3Ъ	cis	0	Me	oil				C15H140	
	trans	0	Me	oil	20:80	74	210(73)	85.79 6.60 (85.68)(6.71)	
3c	cis	0	Br	oi1				C ₁₄ H ₁₁ OBr	
	trans	0	Br	oil	20:80	86	274,276(60)	61.20 ⁴ .08 (61.11)(4.03)	
3d	cis	0	p-MePh	59-60				с ₂₁ н ₁₈ 0	
	trans	0	p-MePh	44-45	45:55	70	286(100)	87.99 6.44 (88.08)(6.33)	
Зe	cis	0	p-ClPh	85-86				C ₂₀ H ₁₅ ClO	
	trans	0	p-ClPh	74-75	30:70	82	306(100)	78.53 4.99 (78.30)(4.93)	
3f	cis	S	н	oil				$C_{14}H_{12}S$	
	trans	S	н	oil	40:60	76	212(29)	79.29 ^{-5.61} (79.20)(5.70)	
3gb		o-viny)	lstilbene		40:60	75			

Table 1. Preparation and Properties of New <u>cis</u>- and <u>trans</u>-1-(2-Heteroaryl)-2-(o-vinylphenyl)ethenes (3a-f)

a) Based on ¹H nmr spectrum. b) σ -Vinylstilbene is known from the lit.¹.

The uv spectra (Table 2) of obtained 1-(2-heteroaryl)-2-(o-vinylphenyl) ethenes (3a-f) have showed the great resemblance with their o-tolyl analogues.³ The substituted derivatives show effects which depend on electron donating

Compd	$\frac{\lambda}{\mathrm{max}}$	log ε) in ethanol trans		
	CIS	ci uno		
3a	255 (4.13), 280(3.99), 305(3.96)	256(4.15), 310(4.30), 322(4.29), 340(4.00)		
3b	222(4.13), 254(4.16), 294(4.06), 305(3.95)	222(3.99), 260(4.07), 326(4.34), 345(Sh, 4.15)		
3c	225(4.12), 263(4.13), 288(4.13)	225(4.08),258(4.22), 322(4.58)		
3d	232(4.32), 332(4.33)	233(4.29), 268(4.29), 362(4.57)		
3e	235(4.40), 330(4.43)	238(4.10), 269(4.15), 348(4.48), 362(4.47)		
3f	233(4.20), 252(4.25), 286(4.00)	225(4.03), 258(4.14), 322(4.35)		

Table 2. Uv Spectral Data of cis- and trans-Isomers (3a-f)

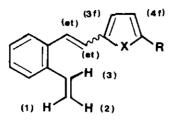


Table 3. ¹H nmr Spectra of <u>cis</u>- and <u>trans</u>-Compounds (3a-f) (in CDC1₃, δ ,TMS)

Com	pd	Har	Het	^{ff} fur	:	H(1) ^a	H(2)a	H(3)a
3a	cis	7.1-7.6	6.52(s,2H)	5.90(dd),	5.61	5.22	6.89	
	trans	7.1-7.6	6.76(d,1H)	6.33(dd),	6.41(dd)	5.63	5.35	7.10
зър	cis	7.1-7.7	6.44(s.2H)	5.78(s,2H)	•	5,66	5.21	6.90
	trans	7.0-7.5	6.69(d,1H)	5.99(dg),		5.63	5.34	0.50
3c	cis	7.1-7.7	6.41,6.57	5.77(d),	6.10(d)	5.66	5.23	6.86
	trans	7.1-7.5	(AB,2H) 6.64(d,1H)	6.27(d),	6 33(4)	5.63	5.37	7.10
	CI 4110		0.04(u,11)	0.2/(0/)	0.33(4)	5.05	J .J?	,
3d°	cis	6.9-7.6	6.52(s,2H)	6.10(d),	6.45(d)	5.65	5.21	
	trans	7.0-7.7	6.76(d,1H)	6.39(d),	6.61(d)	5.65	5.38	
3e	cis	7.1-7.7	6.50, 6.60	6.12(d),	6.50(d)	5.66	5.22	6.93
			(AB,2H)					
	trans	7.2-7.7	6.78(d,1H)	6.43(d),	6.67(d)	5.67	5.40	7.14
3f	cis					5.67	5.22	
	trans	6.9-7.7				5.62	5.37	

Coupling constants (Hz): $J_{1,2}=1.4$; $J_{1,3}=17.5$; $J_{2,3}=10.9$; $J_{3f,4f}=3.4$; $J_{3f,5f}=0.5$; $J_{4f,5f}=2.0$; $J_{4f,Me}=0.9$; $J_{et}=12.2$ (cis), 16.1(trans).

^aCharacteristic signals of the vinyl protons appear as dd. ^b δ_{Me} =2.17(cis), 2.34(trans): ^c δ_{Me} =2.31(cis), 2.35(trans).

or withdrawing substituents. Especially pronounced bathochromic effect is seen in <u>trans</u>-3d compound due to the extended conjugation by p-chlorophenyl group.

The ¹H nmr spectra of the vinyl compounds, presented in Table 3, show well resolved patterns of aromatic, ethylenic, vinylic and furanic hydrogens (3f excluded). Specially noticeable are the terminal protons which appear as two doublets of doublets. It is important to mention that the position of <u>cis</u>-H(2) is always at higher field than that of <u>trans</u>-isomer. The chemical shifts for the ethylenic hydrogens are close to those found for their *o*-tolyl analogues,³ stilbene⁴ and 1,2-difurylethenes.⁵ The furan protons,⁶⁻⁹ H_{3f} and H_{4f} , are readily distinguished by their chemical shifts from the other aromatic hydrogens.

Carbon-13 nmr spectra of 3a-f are recorded and shown in Table 4. Based on the literature data¹⁰⁻¹⁶ and the data obtained by the off-resonance technique many carbons are unambigously assigned.

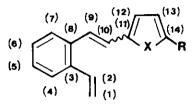


Table 4. Carbon-13 Chemical Shifts of Compounds 3a - f (ppm, CDCl3,TMS)

					•				
			C-3	C-11	C-12	C-2,4,5,6,7,9,10,			
Compd		C-1	C-8	C-14	C-13	C-phenyl			
		(t)	(s)	(s)	(d)	(d)			
3a ci	6	115.2	136.4	152.1	111.2	134.9, 129.2, 127.6, 126.7,			
Ja CI		113.4	135.9	141.5	109.5	125.3, 119.8			
tr	ans	116.5	136.5	153.4	111.6	135.0, 127.8, 127.6, 126.7,			
••	4110	11010	135.2	142.2	108.6	125.8, 124.8, 118.6			
3b ^a ci	S	114.8	136.4	151.2	107.3	134.8, 129.1, 127.3, 125.0,			
			135.7	150.4	110.4	119.7			
tr	ans	116.1	136.2		107.9				
			135.4	151.9	110.2	125.4, 122,9, 118.8			
3c ci	.s	115.2	135.7	153.9	111.5	134.5, 128.7, 127.7, 127.4,			
			135.7	120.8	112.8	127.3, 125.2, 118.9			
tr	ans	116.4	136.4		110.6				
			134.5	121.6	113.2	125.6, 125.0, 117,3			
3d ^b ci	S	115.1	137.1	153.4	112.3	135.9, 135.1, 129.8, 129.2,			
			136.9	151.4	105.9	127.9, 127.4, 126.1, 125.3, 123.7, 119.4			
t r	ans	116.4	137.3	153.9	111.1	135.3, 135.0, 129.3, 128.0,			
••			136.4	152.7	106.5	127.8, 126.7, 125.8, 124.2,			
						123,9, 118.6			
3e ci	is	115.1	136.6	151.9	112.4	128.8, 132.8, 134.9, 129.1,			
			135.8	151.9	106.9	128.6, 127.4, 126.9, 125.2,			
						124.7, 119.1			
tı	rans	116.5	136.4	153.2	111.1	128.8, 133.0, 134.8, 129.08			
			134.9	152.3	107.7				
						125.5, 124.9, 124.8, 118.2			
3f ci	is	115.0	136.2	139.7		29.6, 128.2, 127.9(2), 125.9			
			135.9			, 125.3, 124.5			
tı	rans	116.5	136.2	142.8		27.7, 127.4, 126.5, 126.0,			
			134.9		125.9, 1	124.3, 123.8			

aδMe=13.3(cis), 13.7(trans); bδMe=21.16(cis), 21.22(trans).

EXPERIMENTAL

All melting points are uncorrected. The 1 H and 13 C nmr spectra were recorded on a JEOL FX-90 Q instrument using SiMe₄ as internal standard in CDCl₃. Mass spectral data were obtained on a Varian MAT CH-7 (70 eV) instrument. Uv spectra were measured on a Perkin-Elmer double beam spectrophotometer 124. Silica gel (Merck 0.05-0.2 mm) was used for chromatographic separations. Aryl substituted furancarboxaldehydes were prepared according to the procedure described in literature.¹⁷

<u>General</u> Procedure for the Synthesis of β -Aryl/Heteroaryl-o-divinylbenzenes A solution of sodium ethoxide (obtained by dissolving 0.01 mol of sodium in 10 ml of absolute ethanol) was added dropwise to a stirred solution of oxylylenebis(triphenylphosphonium bromide) (1) (7.88g, 0.01 mol, prepared from α, α' -di-bromo-o-xylene and triphenylphosphine in dimethylformamide) and the corresponding aldehyde (2) (0.01 mol) in absolute ethanol (ca. 300 ml, dried over molecular sieves 3A). The stirring was continued at room temperature for 0.5 h. Under the stream of dry nitrogen gaseous formaldehyde (obtained by decomposition of paraformaldehyde taken in excess, 1.5 g) was introduced and the next quantity of sodium ethoxide (0.012 mol in 10 ml of absolute ethanol) was added dropwise. The reaction was completed within 3-4h (usually was left to stand overnight). After removal of the solvent under reduced pressure, the residue was worked up by adding water and then extracting with benzene. The benzene extracts were dried (anhydrous MgSO₄) and concentrated. The resulting residue was purified and separated by repeated column chromatography on silica gel using petroleum ether as eluent. The first fractions yielded cis- and the last fractions transisomer. Characterizational data of new compounds is provided in Table 1.

ACKNOWLEDGEMENT

The financial support of the Republic Fund for Scientific Work of Croatia is gratefully acknowledged.

REFERENCES

- M. Sindler-Kulyk and W. H. Laarhoven, <u>J. Am. Chem. Soc.</u>, 1976, <u>98</u>, 1052;
 <u>ibid.</u>, 1978, <u>100</u>, 3819; <u>Recl. Trav. Chim. Pays-Bas</u>, 1979, <u>98</u>, 187, 452.
- M. Sindler-Kulyk, L. Spoljaric, and Z. Marinic, <u>Heterocycles</u>, 1989, <u>29</u>, 679.
- M. Sindler-Kulyk, Z. Stiplosek, and B.Metelko, <u>Croat. Chem. Acta</u>, 1989, <u>62</u>, 81.
- L. M. Jackman, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", Pergamon Press, London, 1959.
- 5. M. H. Gianni, E. L. Stogryn, and C. M. Orlando Jr., <u>J. Phys. Chem.</u>, 1963, 67, 1385.
- 6. T. J. Batterham, "NMR Spectra of Simple Heterocycles", John Wiley, 1973.
- F. Fringuelli, S. Gronowitz, A. B. Hornfeldt, I. Johnson, and A.Taticchi, <u>Acta Chim. Scand.</u>, 1974, <u>B28</u>, 175.
- W. J. E. Parr, R. E. Wasylichen, and T. Shaefer, <u>Can. J. Chem.</u>, 1976, <u>54</u>, 3216.
- 9. M. Dandarova, J. Kovac, D. Vegh, and V. Zvak, <u>Coll. Czech. Chem. Comm.</u>, 1982, 47, 3412.
- 10.H.-O. Kalinowski, S. Berger, and S.Braun,"¹³C-NMR-Spektroskopie", Georg Thieme Verlag, Stuttgart, New York, 1984.
- 11.S. Gronowitz, I. Johnson, and A. B. Hornfeldt, <u>Chem. Scr.</u>, 1975, <u>7</u>, 211.
 12.M. T. W. Hearn, <u>Aust. J. Chem.</u>, 1976, <u>29</u>, 107.
- 13.I. Stibor, P. Trska, J. Strogl, and M. Janda, <u>Coll. Czech. Chem.Comm.</u>, 1978, <u>43</u>, 2170.
- 14.E. Pretsch, T. Clerc, J. Seibl, and W. Simon, "Tabellen zur Strukturaufklarung organischer Verbindungen mit spaktroskopischen Methoden", Springer Verlag, Berlin, 1981.
- 15.A. R. Katritzky and K. W. Law, <u>Magn. Res.</u>, 1988, <u>26</u>, 129.
- 16.C. E. Aun, T. J. Clarkson, and D. A. R. Happer, <u>J. Chem. Soc., Perkin</u> <u>Trans. 2</u>, 1990, 635, 645.
- 17.L. Janda and Z. Voticky, Chem. Zvesty, 1984, 38, 507.

Received, 5th August, 1991