A NOVEL 1,6-CYCLIZATION OF IMIDAZOLIUM *N*-ALLYLIDES $(2)^1$: FORMATION OF THE MESOMERIC BETAINE, 7-IMINOIMIDAZO-[1,2-*a*]PYRIDINIUMIDE

Yoshiro Matsuda,* Hiromi Gotou, Keisuke Katou, Hiroshi Matsumoto, Makoto Yamashita, Kimitoshi Takahashi, Shizuki Ide, Kazuki Furuno, and Katsura Torisu

School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi Nagasaki 852, Japan

<u>Abstract</u> - Treatment of imidazolium N-allylide (3) in refluxing 1,2,4trimethylbenzene resulted in 1,6-cyclization to give the mesomeric betaine, 7-iminoimidazo[1,2-a]pyridiniumide (4). On the other hand, heating of 1cyanoimidoylmethylimidazolium N-ylide (6) in refluxing 1,2,4-trimethylbenzene underwent 1,6-cyclization and debenzylation to give 8-aminoimidazo[1,2-a]pyrazine (7). Furthermore, treatment of the imidazolium salt (1a) and ethyl ethoxymethylenenitroacetate (2d) with K2CO3 in DMSO afforded the mesomeric betaine, imidazo[1,2-a]pyridiniumide (12), whereas the reaction of 1a and nitroketene dithioacetal (2e) with K2CO3 in DMSO resulted in 1,5-dipolar cyclization to produce pyrrolo[1,2-a]imidazole (13) and pyrrolo[1,2-a]pyrazine (14).

Pyridinium and imidazolium N-allylides are well known to undergo thermal 1,5dipolar cyclization and aromatization giving the corresponding indolizines and pyrroloimidazoles.²⁻¹⁰ With regard to imidazolium N-allylides, a novel 1,6-cyclization has been found in the thermolysis of imidazolium N-allylides in our previous paper.¹ Thus, the thermolysis of imidazolium N-allylides with the ester group at the 3-position of the allyl group resulted in 1,6-cyclization to give the mesomeric betaines, 7-oxoimidazo[1,2-a]pyridiniumides. As a part of our continuing work on the thermolysis of imidazolium N-allylides, we here report the thermolysis of imidazolium N-allylides, we here report the 3-position of the allyl group to produce the mesomeric betaine, 7-iminoimidazo[1,2-a]pyridiniumide (4) involving 1,6-cyclization.

The starting imidazolium N-allylide (3) and 1-cyanoimidoylmethylimidazolium Nylide (6) used in the present work were prepared by the reaction of 1ethoxycarbonylmethylimidazolium bromides (1a, b) with ketene dithioacetals (2a, c) in the presence of K₂CO₃. A solution of 3 in 1,2,4-trimethylbenzene was refluxed to afford the mesomeric betaine, 7-iminoimidazo[1,2-a]pyridiniumide (4) with 1,6cyclization. Interestingly, the salt (1b) reacted with 2b in the presence of K₂CO₃, followed by heating in refluxing 1,2,4-trimethylbenzene to give the mesomeric betaine, 7-oxoimidazo[1,2-a]pyridiniumide (5). On the other hand, compound (6) was heated in refluxing 1,2,4-trimethylbenzene to produce 8-aminoimidazo[1,2-a]-

Reagents and Conditions:

(a) K2CO3, CHCl3, 25°C, 1 week;

(b) heating in refluxing 1,2,4-trimethylbenzene, 24 h.

2218

The formation of 4 may be rationalized by the outline in Scheme 2. As pointed out in our previous paper,¹ the mechanism for the formation of 4 may proceed via intermediate (8). Thus, the intermediate (8) may cyclize to give 4 via intermediate (9).

Next, we attempted the reaction of 1a with ethyl ethoxymethylenenitroacetate (2d) or nitroketene dithioacetal (2e). The treatment of 1a and 2d with K₂CO₃ in DMSO did not give imidazolium *N*-allylide (11) but afforded the mesomeric betaine (12). On the other hand, the reaction of 1a with 2e in the presence of K₂CO₃ in DMSO produced pyrrolo[1,2-a]imidazole (13) and pyrrolo[1,2-a]pyrazine (14) with 1,5-dipolar cyclization (Scheme 3). As pointed out by Acheson⁵ and Meth-Cohn,¹⁰ the formation of 13 and 14 may be rationalized as outlined in Scheme 4.

EXPERIMENTAL

Melting points were determined with a Mitamura Mel-Temp and are uncorrected. Infrared (ir) spectra were recorded as KBr pellets on a JASCO IRA-2 spectrophotometer. Ultraviolet (uv) spectra were recorded on a Hitachi 323 spectrophotometer. Proton nuclear magnetic resonance (¹H-nmr) spectra were obtained on a JMN-FX-90Q (90 MHz) spectrometer with tetramethylsilane as internal standard. Chemical shifts are reported in parts per million (δ). Elemental analyses (C, H, N) of all compounds described here were performed on a Yanagimoto MT-2 CHN recorder. Mass spectra (ms) were measured on a JMS-DX-303G spectrometer. 1-Methylimidazolium N-(3,3-dicyano-1-ethoxycarbonyl-2-methylthio)allylide (3)

A mixture of **1a** (1.00 g, 4 mmol), **2a** (0.68 g, 4 mmol), and K2CO3 (1.10 g, 8 mmol) in CHCl3 (40 ml) was stirred at room temperature for a week and the mixture was then evaporated under reduced pressure. To the residue was added ice-water (100 ml). The precipitate was filtered, washed with water, dried and recrystallized from CHCl3-MeOH to give **3**.

3, mp 189 °C, 1.11 g (96%); ¹H-nmr (CDCl₃) δ 1.28(3H, t, J=7 Hz, CH₂CH₃), 2.53(3H, s, SCH₃), 3.95(3H, s, NCH₃), 4.18(2H, t, J=7 Hz, CH₂CH₃), 7.14-7.19(2H, m, C4,5-H), 8.17(1H, t, J=2 Hz, C₂-H); ir(KBr) 1670(CO), 2170(CN), 2200(CN) cm⁻¹; uv(EtOH) λ max(log ϵ) 299(3.83), 370(4.35) nm. Anal. Calcd for C₁₃H₁₄N₄O₂S: C, 53.78; H, 4.86; N, 19.30. Found: C, 53.70; H, 4.87; N, 19.14.

6-Cyano-1,7-dihydro-4-ethoxycarbonyl-7-imino-1-methyl-5-methylthioimidazo[1,2- α]pyridin-3a-ium-4-ide (4)

A solution of 3 (0.58 g, 2 mmol) in 1,2,4-trimethylbenzene (60 ml) was refluxed for 24 h and the solution was then evaporated under reduced pressure. To the residue was added ice-water (50 ml). The precipitate was filtered, washed with water, dried and recrystallized from EtOH give 4.

4, mp 150 °C, 0.17 g (30%); ¹H-nmr (CDCl₃) δ 1.41(3H, t, J=7 Hz, CH₂CH₃), 2.55(3H, s, SCH₃), 4.38(2H, q, J=7 Hz, CH₂CH₃), 4.48(3H, s, NCH₃), 7.18(1H, d, J=2 Hz, C₂-H), 8.50(1H, d, J=2 Hz, C₃-H); ir(KBr) 1670(CO), 2190(CN), 3260(NH) cm⁻¹; uv(EtOH) λ max(log ϵ) 243(4.14), 260(4.17), 360(4.27) nm. *Anal*. Calcd for C1₃H14N4O₂S: C, 53.78; H, 4.86; N, 19.30. Found: C, 54.05; H, 4.96; N, 19.00.

1-Benzyl-1,7-dihydro-4-ethoxycarbonyl-6-acetyl-7-oxoimidazo[1,2-a]pyridin-3a-ium-4-ide (5)

A mixture of 1b (1.30 g, 4 mmol), 2b (0.62 g, 4 mmol), and K₂CO₃ (1.10 g, 8 mmol) in CHCl₃ (40 ml) was stirred at room temperature for a week and ice-water (100 ml) was added. The mixture was separated and the aqueous layer was extracted with CHCl₃ (2x30 ml). The combined organic phase was washed with water, dried (Na₂SO₄), and evaporated under reduced pressure. The residue was heated in refluxing 1,2,4-trimethylbenzene (60 ml) for 24 h and the solution was then evaporated under reduced pressure. To the residue was added ice-water (50 ml) and the mixture was extracted with CHCl₃ (3x30 ml). The combined extracts were washed with water (50 ml), dried (Na₂SO₄), and evaporated under reduced pressure. The tarry residue was submitted to column chromatography on silica gel. From a CHCl₃-acetone (10:1) fraction, compound (5) was obtained.

5, mp 182 °C, 0.04 g (3%); ¹H-nmr (CDCl₃) δ 1.39(3H, t, J=7 Hz, CH₂CH₃), 2.78(3H, s, COCH₃), 4.35(2H, q, J=7 Hz, CH₂CH₃), 6.25(2H, s, CH₂), 7.20(1H, d, J=2 Hz, C₂-H), 7.37(5H, s, Ar-H), 8.65(1H, s, C₆-H), 8.97(1H, d, J=2 Hz, C₃-H); ir(KBr) 1630(CO), 1690(CO) cm⁻¹; uv(EtOH) λ max(log ϵ) 243(4.06), 259(4.16), 268(4.15), 331(4.26), 359(4.17), 372(4.15) nm. High resolution ms Calcd for C19H18N₂O4: 338.1266. Found: 338.1256

1-Benzylimidazolium N-[(N-cyano-1-methylthioimidoyl)-1-ethoxycarbonyl]methylide (6)

Compound (6) was prepared by the reaction of 1b (1.30 g, 4 mmol), 2c (0.58 g, 4 mmol), and K₂CO₃ (1.10 g, 8 mmol) in CHCl₃ (40 ml) using procedure above for the synthesis of 3.

6, mp 223 °C, 1.09 g (80%); ¹H-nmr (CDCl₃) δ 1.15(3H, t, J=7 Hz, CH₂CH₃), 2.30(3H, s, SCH₃), 4.08(2H, q, J=7 Hz, CH₂CH₃), 5.31(2H, s, CH₂), 7.12(1H, t, J=2 Hz, C4-H or C5-H), 7.20(1H, t, J=2 Hz, C4-H or C5-H), 7.42(5H, s, Ar-H) 8.08(1H, t, J=2 Hz, C2-H); ir(KBr) 1650(CO), 2140(CN) cm⁻¹; uv(EtOH) λ max(log ϵ) 265(4.12), 310(4.37) nm. Anal. Calcd for C17H18N4O₂S: C, 59.63; H, 5.30; N, 16.36. Found: C, 59.50; H, 5.33; N, 16.21.

8-Amino-5-ethoxycarbonyl-6-methylthioimidazo[1,2-a]pyrazine (7) Compound (7) was prepared from refluxing of 6 (0.68 g, 2 mmol) in 1,2,4trimethylbenzene (60 ml) using procedure above for the synthesis of 4. The tarry residue was submitted to column chromatography on silica gel. From a CHCl3-acetone (10:1) fraction, compound (7) was obtained.

7, mp 171 °C, 0.015 g (3%); ¹H-nmr (CDCl₃) δ 1.49(3H, t, J=7 Hz, CH₂CH₃), 2.51(3H, s, SCH₃), 4.49(2H, q, J=7 Hz, CH₂CH₃), 5.95(2H, br s, NH₂), 7.55(1H, d, J=1 Hz, C₂-H), 8.59(1H, d, J=1 Hz, C₃-H); ir(KBr) 1660(CO), 3300(NH), 3400(NH) cm⁻¹; uv(EtOH) λ max(log ϵ) 220(4.02), 266(4.49), 272(4.53), 330(3.98), 343(4.06), 356(3.93) nm. High resolution ms Calcd for C10H12N4O₂S: 252.0681. Found: 252.0679. 1,7-Dihydro-4-ethoxycarbonyl-1-methyl-6-nitro-7-oxoimidazo[1,2-a]-pyridin-3a-ium-4-ide (12) A mixture of 1a (1.00 g, 4 mmol), 2d (0.76 g, 4 mmol), and K₂CO₃ (1.10 g, 8 mmol) in DMSO (20 ml) was stirred at room temperature for 3 days and the mixture was added to ice-water (100 ml) and extracted with CHCl₃ (3x30 ml). The combined extracts were washed with water, dried (Na₂SO₄), and evaporated under reduced pressure. The residue was recrystallized from EtOH-CHCl₃ to give 12.

12, mp 298 °C, 0.63 g (59%); ¹H-nmr (CDCl3) δ 1.42(3H, t, J=7 Hz, CH₂CH₃), 4.40(2H, q,

J=7 Hz, CH2CH3), 4.52(3H, s, NCH3), 7.33(1H, d, J=2 Hz, C2-H), 8.84(1H, s, C5-H),

9.03(1H, d, J=2 Hz, C₃-H); ir(KBr) 1690(CO), 1700(CO) cm⁻¹; uv(EtOH) λ max(log ϵ)

240(4.09), 265(4.16), 272(4.18), 317(4.21), 328(4.30), 390(4.10) nm. Anal. Calcd for C11H11N3O5: C, 49.81; H, 4.18; N, 15.84. Found: C, 49.83; H, 4.18; N, 15.86.

5-Ethoxycarbonyl-1-methyl-6-methylthio-1H-pyrrolo[1,2-a]imidazole (13) and 1,2-Dihydro-2-methyl-8-methylthio-7-nitro-1-oxopyrrolo[1,2-a]pyrazine (14)

Compounds (13, 14) were prepared by the reaction of 1a (1.00 g, 4 mmol), 2e (0.60 g, 4 mmol), and K₂CO₃ (1.10 g, 8 mmol) in DMSO (20 ml) using procedure above for the synthesis of 12. The residue was submitted to column chromatography on silica gel. From a benzene-CHCl₃ (20:1) fraction, product (13) was obtained. From a benzene-CHCl₃ (1:20) fraction, product (14) was obtained.

13, mp 123 °C, 0.29 g (30%); ¹H-nmr (CDCl3) δ 1.40(3H, t, J=7 Hz, CH₂CH₃), 2.48(3H, s, SCH₃), 3.60(3H, s, NCH₃), 4.35(2H, q, J=7 Hz, CH₂CH₃), 5.47(1H, s, C7-H), 6.63(1H, d, J=2 Hz, C₂-H), 7.53(1H, d, J=2 Hz, C₃-H); ir(KBr) 1660(CO) cm⁻¹; uv(EtOH) λ max(log ε) 318(3.73) nm. Anal. Calcd for C11H14N2O2S: C, 55.44; H, 5.92; N, 11.76. Found: C, 55.32; H, 5.89; N, 11.62.

14, mp 236 °C, 0.29 g (30%); ¹H-nmr (CDCl3) δ 2.61(3H, s, SCH3), 3.45(3H, s, NCH3), 6.58(1H, d, J=6 Hz, C5-H or C6-H), 6.87(1H, d, J=6 Hz, C5-H or C6-H), 7.84(1H, s, C3-H); ir(KBr) 1640(CO) cm⁻¹; uv(EtOH) λ max(log ε) 219(3.90), 231(3.86), 287(3.91), 380(3.62) nm. Anal. Calcd for C9H9N3O3S: C, 45.18; H, 3.79; N, 17.56. Found: C, 44.99; H, 3.77; N, 17.48.

REFERENCES

- 1. Part 1: Y. Matsuda, H. Gotou, K. Katou, H. Matsumoto, M. Yamashita, K. Takahashi, and S. Ide, *Heterocycles*, 1990, **31**, 977.
- 2. K. Matsumoto, J. Syn. Org. Chem. Japan, 1974, 32, 731.
- 3. T. Uchida and K. Matsumoto, Synthesis, 1976, 209.
- F. J. Swinbourne, J. H. Hunt, and G. Klinkert, "Advances in Heterocyclic Chemistry" ed. by A. R. Katrizky and A. J. Boulton, Academic Press, New York, 1978, Vol. 23, p. 103.
- 5. R. M. Acheson and N. F. Flmore, ibid., 1978, Vol. 23, p. 263.
- 6. Y. Tamura and M. Ikeda, ibid., 1981, Vol. 29, p. 71.
- 7. E. C. Taylor and I. J. Turchi, Chem. Rev., 1979, 79, 181.
- Y. Tamura, Y. Sumida, S. Haruki, and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1975, 575.
- 9. Y. Tominaga and Y. Matsuda, J. Syn. Org. Chem. Japan, 1985, 43, 669.
- 10. O. Meth-Cohn, Tetrahedron Lett., 1975, 413.

Received, 14th August, 1991