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Abstract-Thermal reaction of 2-(2-alkynylsulfiny1)tropones afford- 

ed 3-acylcyclohepta[~thiophen-8-ones, their dihydro derivatives as 

well as deacylated 2.3-dihydrocyclohepta[uthiophen-8-ones. Deu- 

terium labelling experiment confirmed the intramolecular reaction 

mode, which is different from the mechanism reported for the reac- 

tion of 2-(2-propenylsulfiny1)tropones. 

Thermal rearrangements of allyl- and propargylsulfinylarenes are of considerable 

interest. In 1974, Makisumi &d.l reported sharply contrasting results between (2- 

alkynysulfiny1)arenes ( A )  and (2-alkenylsulfinyl)arenes (B) to give products with or 

without [2,3] sigmatropic S-0 fission. 

R 

Rd. la 

In 1984, we found that thermolysis of 2-(2-halo-2-propenylsulfiny1)tropones (C) to 3- 
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halo-1-0x0-4a-cyclohepta[uthiopyran-9-ones (D) proceeded via radical chain process.2 

The cross-over labelling experiments indeed confirmed this intermolecular pathway. 

X=CI and Br 

Very mild conditions of our rearrangement3 when compared with those employed by 

Makisumi and the different mode of product formation are worthy of further investi- 

gation of 2-(2-alkynylsu1finyl)tropones (I) ,  of which the results are described herein. 

The substrates (1) were prepared by propargylation of 2-mercaptotropone (2)4 and 

subsequent m-chloroperbenzoic acid oxidation of the resultant 2-(2-alkyny1thio)- 

tropones (3).5 

An acetonitrile solution6 of 2-(2-propynylsulfiny1)tropone~ ( l a ,  mp 135-136 OC) was 

heated in a sealed tube at 110 "C for 5 min. The products (4-6) thus formed were 

isolated via high pressure liquid chromatography; the major product was identified as 

3-formylcyclohepta[~thiophen-%one (4a, mp 197-199 "C) on the basis of the 'H nmr 

analysis. Also identified were 2,3-dihydrocyclohepta[b]thiophen-%one (5, mp 104- 

105 "C) and the known bis(2-troponyl) disulfide 16, mp 224-226 OC (lit.,8 mp 206 OC)],  

a radical recombination product. 

A similar treatment of 2-(2-butynylsulfiny1)tropone ( l b ,  mp 124-126 OC) in W d i -  

methylformamide (DMF) afforded 3-acetylcyclohepta[hIthiophen-8-one (4b, m p  160-  



161 OC) and 6, along with new types of products, 3-acetyl-2.3-dihydrocyclohepta[hl- 

thiophen-&one (7b,  mp 96-97 OC) and 3-acetyl-3-hydroxy-2.3-dihydrocyclohepta[hl- 

thiophen-Gone (8b, a yellow oil). The DDQ dehydrogenation of the major product (7b) 

gave 4b quantitatively. 

An extension of the reaction to 2-(4-chloro-2-butyny1sulfinyl)tropone ( l c ,  mp 97-99 

"C) in DMF afforded similar thermolysates; 3-chloroacetylcyclohepta[~thiophen-8-one 

(4c, mp 215-217 T), 5, and 6. However, the presence of the allylic chlorine atom 

caused a complicated product distribution to give a chlorine-free 4 b  and a dichloro 

compound, 2.3-bis(chloromethyl)cyclohepta[~thiophen-one (9c, mp 164-166 OC), 

with an inferior material balance. 

A marked contrast in the product distributions of the present results to those of C ,  

previously investigated, suggests different mechanisms involved. Although the for- 

mation of the same compounds (5 and 6) from l a  and l c ,  and the concomitant forma- 

tion of 4 and 7 having different oxidation states from l b  seem to suggest a radical 

mechanism, the absence of the thiopyran derivatives might be difficult to explain in 

terms of the radical dissociation-recombination mechanism. 

Thus, to differentiate the intra- and inter-molecular processes, a cross-over experi- 

ment by an aid of deuterio derivative was then carried out. An equimolar mixture of 

la-3.5.7-d3 and l b  was heated in DMF for 10 min, the mixture was fractionated in a 



similar manner, and the products were analyzed mass-spectrometrically. The deuteri- 

um distribution patterns of the products (4a ,  4 b ,  7 b  and 8 b )  along with deoxygen- 

ated 3a ,  clearly showed the intramolecular mechanism involved. 

l l O ° C  

The [2,31 sigmatropy and the subsequent oxa-thia-Cope rearrangement ([3,3] sigma- 

tropy) of these reactants are quite rapid, and the formation of 3-acylcyclohepta[~- 

thiophen-%ones (4) can be depicted as follows: 

CI 

b: [3,3] sigrnatropy 
c: dehydrogenation 

k+ : Id: reductive deac y lation1 

I \ - e: 1 ,Ccyclization 

- 1 \ 1 \ /  f: Michael addition of - - chloride 

0 9 c g:1,2-cyclization 

At the same time, the difference of the type of products between A and 1 should be 
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mentioned here: after the [2,3] and [3,3] sigmatropies, A gave both the 1,2- and 1.4- 

cyclization products (E and F), but all the products are in the same oxidation state. On 

the other hand, from 1 only 1.4-cyclization products ( 4 , s  and 8 )  were identified, ex- 

cept for 9c from l c ,  and their oxidation states are different. This may be due to the 

difference of the solvents used; Makisumi' used protic solvents, and their 1.4-cycliza- 

tion products showed incorporations of the solvent residues. We used aprotic solvents 

to prevent an incorporation of the solvent. However, in the reaction with l c ,  liberated 

chloride serves as a nucleophile to give 9c via a Michael addition. Therefore, in the 

absence of nucleophilic species in the medium, intramolecular cyclization to 3-acyl- 

cyclohepta[hlthiophen-%ones occurred preferentially. It may also be suggested that 

the m - c y c l i z a t i o n  products, 7 or their equivalents, undergo radical abstraction pro- 

cess to give various types of products. As the acyl groups of unidentified 3-formyl- 

and 3-chloroacetyl-2,3-dihydrocyclohepta[~thiophen-8-ones (7a and 7c) are radical 

sensitive, this radical process may be attributable to poor material balance observed 

particularly in the reaction with l a  and l c .  

Finally, it is interesting that, unlike the cases of A and B ,  the thermolysis of 1 and C 

resulted in the formation of different heterocycles, cyclohepta[Uthiophen-8-ones (4, 

5, 7,  8,  and 9) and cyclohepta[Uthiopyran-9-ones (D).  
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non-polar solvents, such as benzene, caused an extensive decomposition. 

7. A l l  new compounds were fully characterized. The representative 1H nmr spectral 

data (CDC13) are collected as follows: 

la:  6=2.35(1H,t, J=2.6 Hz), 4.00(1H, dd, J=16.5,2.6 Hz), 4.01(1H, dd, J=16.5,2.6 HZ), 7.11(1H, 

dm, J=11.6 Hz), 7.25(1 H, ddm, J=10.2, 8.4 Hz), 7.34-7.44(2H, m), and 7.80(1 H, dd, J=10.2, 1.1 

Hz). 

l b :  6=1.79(3H, td, J=2.6, 0.7 Hz), 3.87(1H, dq, J=16.1, 2.6 Hz), 3.98(1H, dq, J=16.1, 2.6 Hz), 

7.10(1H,dd, J=l1.7,0.7 Hz), 7.23(1H, ddm, J=10.3,8.4 Hz), 7.23-7.43(2H, m),and 7.77(1H,dm, J= 

9.8 Hz). 

lc: 6=4.04(2H, m), 4.08(2H, m), 7.11(1H, dm, J=11.4 Hz), 7.26(1H, ddm, J=10.6,8.4 Hz), 7.41(2H, 

ddm, J=11.4, 8.4 Hz), and 7.81 (1 H, d, J=10.6 Hz). 

4a:6=7.10(1H, ddd, J=11.4, 8.1, 1.1 HZ), 7.13(1H,dd, J=12.1, 1.1 HZ), 7.38(1H, ddd, J=12.1, 8.1, 

1.1 Hz), 8.57(1 H, s), 8.75(1 H, dd, J=11.4, 1.1 Hz), and 10.15(1 H, s). 

4b: 6=2.68(3H, s), 7.06(1 H, ddd, J=11.4,8.4,1.1 Hz), 7.10(1 H, dd, J=12.1,1.1 Hz), 7.36(1 H, ddd, J= 

12.1,8.4, 1.1 Hz), 8.53(1H,s), and8.78(1H,dd, J=11.4, 1.1 Hz). 

4 ~ :  6=4.70(2H, S), 7.08(1H, ddd, J=11.4, 8.5, 1.1 Hz), 7.1 1(1H, dd, J=12.4, 1.1 Hz), 7.38(1H, ddd, 

J=12.4, 8.5, 1.1 Hz), 8.57(1H, s), and 8.67(1H, dd, J=11.4, 1.1 Hz). 

7b: 6=2.31(3H, s), 3.48(1H, dd, J=12.1,4.4 Hz), 3.58(1H, dd, J=12.1,9.5 Hz), 4.48(1H, dd, J=9.5, 

4.4 HZ), 6.90(1H, ddd, J=l1.0, 8.4, 1.1 HZ), 7.01(1H, dd, J=11.0, 1.1 HZ), 7.02(1H, dd, J=12.4, 1.5 

Hz), and 7.23(1 H, ddd, J= 12.4, 8.4, 1.5 Hz). 

5: 6=3.24(2H, 1, J=8.5 Hz), 3.63(2H, 1, J=8.5 Hz), 6.83(l H, ddd, J=11 .O, 8.4, 1.1 Hz), 7.01 (1 H, dd, 

J=12.1, 1.1 Hz), 7.03(1H, dd, J=11.0, 1.1 Hz), and 7.17(1H, ddd, J=12.1, 8.4, 1.1 Hz). 

8b: 6=2.36(3H, S), 3.41(1H, d, J=13.2 HZ), 3.49(1H, d, J=13.2 Hz), 5.17(1H, s), 6.67(1H, dd, J=10.6, 

1.1 Hz),6.94(1H,dd, J=10.6, 8.4,0.7Hz), 7.06(1H,dd, J=12.1,0.7Hz),and7.26(1H,ddd, J= 12.1, 

8.4,l.l Hz). 

9 ~ :  6=4.81(2H, s), 4.86(2H, S), 7.06(1H, ddd, J=11.0, 8.4, 1.1 Hz), 7.09(1H, dd, Jz12.1, 1.1 Hz), 

7.34(1H, ddd, J=12.1, 8.4, 1.1 Hz), and 7.61(1H, dd, J=11.0, 1.1 Hz). 
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