SYNTHESIS OF 2',3'-DIDEHYDRO-2',3'-DIDEOXYNUCLEOSIDES UTILIZING COUPLING REACTIONS BETWEEN NUCLEIC BASES AND PHENYLTHIO-SUBSTITUTED 2,3-DIDEOXYRIBOSE

Hiroshi Kawakami,^{*} Takashi Ebata, Koshi Koseki, Katsuya Matsumoto, Hajime Matsushita, Yoshitake Naoi,[†] and Kazuo Itoh[†]

Life Science Research Laboratory, Japan Tobacco Inc., 6-2 Umegaoka, Midori-ku, Yokohama, Kanagawa 227, Japan

[†]Tokyo Research Laboratory, Yuki Gosei Kogyo Co., Ltd., 3-37-1 Sakashita, Itabashi-ku, Tokyo 174, Japan

<u>Abstract</u> --- Stereoselectivities in coupling reactions between silylated pyrimidine bases and 3- or 2- α -phenylthio-2,3-dideoxyribose were examined. In the former case, no stereoselectivies were observed when the coupling reactions were performed either with 1-chlorosugar in an S_N2 mode or in the presence of Lewis acids as catalyst in an S_N1 mode. Coupling reaction with 2- α -phenylthio-2,3-dideoxyribose in the presence of Lewis acids, especially SnCl₄, proceeded with good stereoselectivity to give anomeric mixtures of α : $\beta = 1$: 9. All these nucleosides were converted to 2',3'didehydro-2',3'-dideoxynucleosides by oxidation to sulfoxides followed by thermal elimination of sulfenic acid.

2',3'-Didehydro-2',3'-dideoxynucleosides $(d_4Ns, 1)$ are useful intermediates for the preparation of 2',3'-dideoxynucleosides (ddNs),¹ which are anti-HIV agents.² Some d₄Ns have also been shown active against HIV.³ As the importance of d₄Ns has been recognized from this viewpoint, some practical methods for the preparation of these nucleosides have been developed. In many of these methods, the starting materials are

HO

1 : 2',3'-didehydro-2',3'dideoxynucleoside (d₄Ns)

ribonucleosides^{1a,4} or 2'-deoxynucleosides.^{1b,5} There are no reports on the synthesis of 1 utilizing coupling reactions between 2,3-didehydro-2,3-dideoxyribose and nucleic bases, probably because of the instability of the sugar moiety.⁶

In connection with our studies on the stereoselective preparation of deoxynucleosides utilizing coupling reactions,⁷ attention was directed to the organothio group in the sugar part as a stereocontrolling element. Thermal elimination of sulfoxides is a well-known procedure⁸ for constructing a carbon-carbon double bond and thus it was considered possible to utilize the 3'- or 2'-phenylthio (PhS) group on a nucleoside to construct double bond by oxidation followed by thermal elimination. In this paper, stereoselectivities in the coupling reactions with 3- or 2-phenylthio-2,3-didoxyribose derivatives and the synthesis of d₄Ns 1 from their coupling products are described.

Coupling Reactions with 3-Phenylthio-2.3-dideoxyribose

We reported that acyl-protected 1-chloro-2,3-dideoxyriboses exist as mixtures of α - and β -anomers in a ratio of 6 : 4,^{7d} but are mainly in the α -form in the case of acylated 1-chloro-2-deoxyriboses.⁹ The 3- α -substituent (acyloxy group) may thus increase the ratio of 1- α -chlorosugar. Coupling reactions between 1-chlorosugar and silylated nucleobases with no catalysts proceed in an S_N2 mode,^{7,10} and the introduction of organothio group as 3- α -substituent to 2,3-dideoxyribose may make the stereoselective coupling reactions possible. The PhS group was thus introduced into 2,3-dideoxyribose as such substituent.

3- α -Phenylthio-2,3-dideoxyribose (3-PhS-2,3-ddr, 5)¹¹ was prepared as shown in Scheme 1 from γ -butenolide (3), easily prepared from levoglucosenone (1).¹² Chlorination of this sugar (5) with HCl-MgSO4¹³ gave an anomeric mixture of 1-chlorosugar (6) in a ratio of 33 : 67, as determined by ¹H-nmr (Scheme 2). The anomeric ratio of 6 appeared to be not as high as that expected from the results of 1-chloro-2-deoxyribose. Coupling reaction between 6 and silylated uracil (7a) in chloroform without any catalysts (S_N2-mode coupling reaction)⁷c,d,10^a resulted in the formation of an anomeric mixture of nucleosides (8a) in a ratio of 68 : 32 (¹H-nmr). In both stages of 1-chlorosugar (6) and nucleoside (8a), their stereochemistries could not be determined, and 8a was further converted to benzoylated 2',3'-dideoxyuridine (9 β) and its α -anomer (9 α) by reductive desulfurization with Raney Ni (W-2). A comparison with authentic samples previously synthesized by us⁷d indicated the anomeric mixture of 9 consisting of both anomers in a ratio of α : $\beta = 68 : 32$. This result indicates that 1-chlorosugar (6) prepared as shown in Scheme 2 existed at a ratio of α : $\beta = 33 : 67$, as the coupling reaction was performed under the conditions to proceed completely in S_N2 mode.¹⁰ The nature of 3- α -substituents or their steric hindrance thus strongly affects the stability of each anomer of 1-chlorosugar.

Chu found that coupling reactions between 3- α -phenylthio-2,3-dideoxyribose and silylated nucleic bases in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a catalyst proceeded in a non-stereoselective manner to give a mixture of equal amounts of both anomers.¹¹ The stereoselectivity in the coupling reaction of S_N1 mode is known to vary when the catalyst is changed.¹⁴ We thus examined the effects of Lewis acids on the coupling reactions between sugar (10) or (11) and silylated uracil (7a). Yields and stereoselectivities were determined by hplc after deprotection of nucleosides (8a) and (12). The results are summarized in Table 1. Remarkable stereoselectivity could not be achieved. The α -selectivity increased when Lewis acids that coordinate to sulfur atoms were used (Entries 4-8) or the protecting group changed from benzoyl group (Entry 3) to *tert*-

Table 1. Coupling reactions between sugar (10) or (11) and uracil (7a) in the presence of Lewis acids^a)

RO	Me₃SiC	OSiMe ₃ <u>Lewis acid</u> CH ₂ Cl ₂ 7 a	RO PhS Ba : R=Bz- ca : D boots of	HO O N PhS
Entry	Sugar (R_)	I euris Acidb)	Viald/0/C)	Staraoselectivity()
Entry	Sugm (IC-)		$(\alpha + \beta)$	$(\alpha : \beta)$
1	10 (Bz-)	TMSOTf	87	60:40
2		TMSBr	56	54:46
3		SnCl4	73	31:69
4		TMSOTf+HgBr2	61	69:31
5		TMSOTf+Sn(OTf)2	78	63:37
6		TMSBr+HgBr2	81	68:32
7		TMSBr+Sn(OTf)2	84	65:35
8d)		ⁿ BuSnCl3	83	77:23
9	11 (^t BuPh ₂ Si-)	SnCl4	70	53:47

a) Coupling reactions were carried out under following conditions; 0.25 mmol scale, sugar : uracil = 1 : 5, with 0.13 mmol of Lewis acids, in 3 ml of CH₂Cl₂, room temperature, overnight.

b) TMSOTf : trimethylsilyl trifluoromethanesulfonate, TMSBr : bromotrimethylsilane, Sn(OTf)₂ : stannous trifluoromethanesulfonate

c) Determined by hplc after deprotection of crude nucleosides with NaOMe for 10 or $^{n}Bu_{4}N^{+}F^{-}$ for 11.

d) 0.60 mmol of Lewis acid was used.

2454

butyldiphenylsilyl group (Entry 9). Repulsion between the 3- and 4-substituents on furanose ring of sugar (10) or (11) became greater in both cases and conformational change in the furanose ring would thus appear to occur to form the α -nucleoside preferentially.

When $SnCl_415$ was used as a catalyst, an exceptional β -selectivity was observed (Entry 3). This encouraged us to examine coupling reactions with other silylated bases [thymine (7b) and N^4 -acetylcytosine (7c)] under similar reaction conditions. The results shown in Scheme 3 indicate these reaction conditions not to be general for good β -selectivity. Good stereoselectivity could not be achieved in the coupling reactions with 3-PhS-2,3-ddr and silylated pyrimidine bases either in S_N2 mode or S_N1 mode reactions.

Coupling Reactions with 2-Phenylthio-2.3-dideoxyribose

The α -PhS group at the 3-position on 2,3-dideoxyribose did not have any significant effect on increase in β -selectivity in the coupling reactions, and thus the stereochemistry in coupling reactions with 2,3-dideoxyribose which has the PhS group at the 2-position was studied.^{6a,b} Three similar cases have been reported,¹⁶ and increase in bulkiness of the organothio groups at C-2 of sugars raised the stereoselectivity in coupling reactions to give mainly 1',2'-trans nucleosides. Nicolaou has reported the selective formation of 1,2-trans glycosyl bond in glycosylation reactions with 2-phenylthiopyranose.¹⁷ This is attributed to the participation of an episulfonium ion intermediate, assumed to be formed by attack of a lone pair of the sulfur atom on the cationic center at the anomeric carbon, and to interfere the formation of glycosyl bonds on the same side. Both steric and electronic effects should lead to better stereoselectivity in coupling reactions between 2-phenylthio-2,3-dideoxyribose and nucleobases.

2-Phenylthio-2,3-dideoxyribose derivatives (2-PhS-2,3-ddr, 16 and 17) were prepared as follows (Scheme 4). γ -Lactone (13) prepared conveniently from levoglucosenone (2),¹² was phenylsulfenylated by the procedure reported by Trost¹⁸ to give two isomers (14) and (15). After separation of these isomers by column chromatography, each isomer was reduced by DIBAL-H. In this work-up, small quantities of epimerization at the C-2 were detected, but purification was easily performed after acetylation.

Coupling reactions between silvlated uracil (7a) and 2-PhS-2,3-ddr (16) or (17) were performed in the presence of TMSOTf,¹⁹ hoping to obtain cationic centers at anomeric carbons (Scheme 5). Configurations of the anomeric centers of the nucleosides (18a) and (19) were determined by comparison with an authentic sample of silvlated 2',3'-dideoxyuridine $(20\beta)^{20}$ after removal of the PhS group by Raney Ni (W-2). In both cases, anomeric mixtures of 18a or 19 were obtained in a ratio of 2 : 8, and the major isomers had 1',2'-trans relationship. Stereoselectivity in the coupling reactions is thus strictly controlled by the PhS group on C-2 of sugars (16) and (17). Thus, we used sugar (16) to achieve higher β -selectivity.

The reaction conditions of coupling reactions between 16 and 7a were examined, and the results are summarized in Table 2. Change of the solvent from 1,2-dichloroethane to acetonitrile raised β -selectivity (Entry 2). This appears to support the intermediacy of episulfonium ion (21), since a more polar solvent (MeCN) stabilized the

2456

ionic species to increase the contribution of **21**. The nature of Lewis acids varied selectivity. With SnCl₄ instead of TMSOTf as catalyst, β -selectivity became much higher (Entries 4 and 5). This may be explained as follows. Nicolaou also reported that in the presence of

SnCl₂, 1,2-*trans* selectivity was lost because complexion of SnCl₂ to sulfur atoms in sugar prevented the formation of episulfonium intermediates.¹⁷ SnCl₄ can be also expected to coordinate to sulfur atoms, and thus another intermediate (22) was thought involved in the reaction. Comlpexed SnCl₄ may cause severe steric hindrance on the α -face of the sugar to increase β -selectivity.

The above reaction conditions were used for coupling reactions with other silvlated pyrimidine bases, *i.e.*, silvlated thymine (7b) and silvlated N⁴-acetylcytosine (7c). The results are summarized in Scheme 6 and indicate that coupling reactions between 16 and silvlated pyrimidine bases in the presence of SnCl4 as a catalyst generally proceed with good stereoselectivity to give anomeric mixtures of nucleosides in a ratio of α : $\beta = 1 : 9$.

Entry	Lewis acid (equiv.)	Solvent	Yield/%b) $(\alpha + \beta)$	Stereoselectivity ^{c)} ($\alpha : \beta$)
1	TMSOTf (0.2)	CICH2CH2CI	90	21 : 79
2	TMSOTf (0.2)	MeCN	96	11:89
3	TiCl4 (6.0)	ClCH2CH2Cl	65	15:85
4	SnCl4 (6.0)	CICH2CH2Ci	96	3:97
5d)	SnCl4 (1.8)	CICH2CH2CI	91	7:93

Table 2. Coupling reactions between sugar (16) and silvlated uracil (7a) in the presence of Lewis acids^a)

a) Coupling reactions were carried out under following conditions; 0.10 mmol scale, sugar : uracil = 1 : 5, in 2 ml solvent, room temperature.

b) Isolated yields (preparative tlc).

c) Determined by ¹H-nmr.

d) Reaction conditions; 3.0 mmol scale, sugar : uracil = 1 : 1.5, in 20.5 ml solvent, 0 °C.

Conversion of PhS-substituted Nucleosides to d4Ns

Nucleosides functionalized with PhS group on sugar moiety were obtained and thus a method for converting them to d4Ns was developed. Initially, we chose the thymidine derivative (8b) (α : β = 52 : 48, one anomer could not be separated from the other by hplc) as a starting material. Oxidation of sulfide (8b) to sulfoxide (23b) was performed with *m*-chloroperbenzoic acid (mCPBA) under the conditions reported by Wu.²¹ Although 23b has not been fully characterized yet, ¹H-nmr showed two diastereomeric pairs of each anomers of sulfoxide (23b),

due to a newly formed chiral center at the sulfur atom, to be present in similar quantities. When a solution of 23b in xylene was refluxed for thermal elimination reaction, thymine was formed immediately. Sulfenic acid formed by the thermal elimination of sulfoxide may thus have destroyed nucleosides (23b) or (24b). The latter one is known to be particularly unstable to acids. To neutralize acidity in the reaction solution, the thermal reaction was carried out in the presence of a base. Some reaction conditions, for example, bases (NaHCO₃, 4-picoline, DBU, KO^tBu) and solvent (xylene, dioxane), were examined. While monitoring by tlc, it was noted that (1)reactions went to completion faster in xylene than in dioxane at reflux and (2)basicities of the bases did not affect reaction rates very much. The best results were obtained when reactions were performed in xylene-4-picoline solution at reflux for 4 h. 4-Picoline acted both as a base and co-solvent to increase the solubility of the nucleoside (23b) in xylene. Only protected d₄T (24b β) and its α -anomer (24b α) were obtained.

Nucleosides (8a) (α : β = 31 : 69) and (8c) (α : β = 43 : 56), neither of which could be separated to each anomers, were converted under the same reaction conditions as those for thymidine derivative (8b). The results are summarized in Scheme 7. Starting with uridine derivatives (8a), similar results were obtained. Cytidine derivatives (8c), however, gave product (24c) in low yield with formation of N⁴-acetylcytosine. Lability of the glycosyl bonds of cytidine derivatives appeared to be the cause for this.

Following the same procedure, 2'-phenylthionucleoside $(18a\beta - 18c\beta)$ were also thought to be possible to convert to d₄Ns. Oxidation of $18a\beta - 18c\beta$, purified by recrystallization $(18b\beta, 18c\beta)$ or hplc $(18a\beta)$, with mCPBA proceeded smoothly to give sulfoxides (25a-c). All these sulfoxides were soluble in xylene alone and thus thermal elimination was carried out in the presence of 2.3 equivalents of Bu₃N instead of a large quantity of 4-picoline. In all cases, the starting material was consumed within 1 h to give d₄Ns (26a-c) in the yields shown in Scheme 8. Protected d₄U (26a) and d₄T (26b) were obtained in good yields, but the yield of N^4 -acetyl-d₄C (26c) was not as high as that of 26a or 26b. During thermal elimination of cytidine derivative (25c), the formation of N^4 -acetylcytosine was detected, as in the case of 3'-phenylthio derivative (23c). The better yield of 26c than that of 24c, however, appears to be due to the shorter reaction time. All nucleosides (26a-c) were deprotected with tetrabutylammonium fluoride (TBAF) under the standard conditions and were confirmed by comparison with those reported.^{1,4,5}

Conclusion

The effects of the PhS group on 2,3-dideoxyribose on stereoselectivity in coupling reactions with silvlated pyrimidine bases were clarified. Good stereoselectivity could not be achieved in coupling reactions with 3- α -PhS-2,3-ddr either in the S_N2 mode or S_N1 mode reaction. In contrast, coupling reactions between 2- α -PhS-2,3-ddr and silvlated pyrimidine bases proceeded with high β -selectivity by using Lewis acid catalysts, especially SnCl4. Nucleosides with PhS group on the sugar moiety could be converted to d4Ns by oxidation to sulfoxides

with mCPBA followed by thermal elimination. These procedures should be applicable to preparation of new d4Ns derivatives.

EXPERIMENTAL

General procedure for the coupling reactions between 3-phenylthio-2,3-dideoxyribose (3-PhS-2,3-ddr, 10) and silylated pyrimidine bases (7)

Under argon atmosphere, silylated pyrimidine base (7, 8.90 mmol)^{7d} and 1-O-acetyl-5-O-benzoyl-2,3-dideoxy-3-phenylthio-D-*erythro*-pentofuranose (10, 1.60 g, 4.30 mmol) were dissolved in dry dichloromethane (40 ml). To this solution, 10 ml of 1.0 M solution of SnCl4 in dichloromethane²² was added dropwise at 0 °C, and the mixture was stirred under argon atmosphere at room temperature overnight. The reaction mixture was poured into a saturated aqueous solution of sodium bicarbonate and extracted with dichloromethane three times. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled away under reduced pressure. The residue obtained was purified by silica gel column chromatography (dichloromethane : acetone= 95 : 5-80 : 20) to give an anomeric mixture of nucleosides.

<u>1-(5-*Q*-Benzoyl-2.3-dideoxy-3-phenylthio-**D**-*erythro*-pentofuranosyl)uracil (**8a**): 1.60 g (4.30 mmol) of **10** and 1.00 g (8.90 mmol) of uracil gave 1.33 g of **8a**, 73% yield (α : β = 31 : 69) ; ¹H-nmr (CDCl₃) : δ 9.77 (1H, br, NH), 8.08-7.96 (2.25H, m, aromatic H, α -H-6), 7.65-7.25 (8.75H, m, aromatic H, β -H-6), 6.20 (0.25H, dd, *J*=6.4, 5.3 Hz, α -H-1'), 6.08 (0.75H, dd, *J*=5.9, 4.5 Hz, β -H-1'), 5.79 (0.25H, d, *J*=8.1 Hz, α -H-5), 5.51 (0.75H, d, *J*=7.4 Hz, β -H-5), 4.66 (0.75H, dd, *J*=12.5, 2.6 Hz, β -H-5'), 4.58-4.47 (0.5H, m, α -H-4', α -H-5'), 4.44 (0.75H, dd, *J*=12.5, 3.7 Hz, β -H-5'), 4.33 (0.25H, dd, *J*=11.9, 4.6 Hz, α -H-5'), 4.28-4.22 (0.75H, m, β -H-4'), 3.86-3.70 (1H, m, H-3'), 3.08-2.97 (0.25H, m, α -H-2'), 2.59-2.45 (1.5H, m, β -H-2'), 2.14 (0.25H, ddd, *J*=14.4, 6.6, 5.2 Hz, α -H-2').</u>

1-(5-*O*-Benzoyl-2.3-dideoxy-3-phenylthio-**D**-erythro-pentofuranosyl)thymine (**8b**): 1.60 g (4.30 mmol) of **10** and 1.12 g (8.88 mmol) of thymine gave 0.65 g of **8b**, 34% yield (α : β = 52 : 48) ;¹H-nmr (CDCl₃) :δ 8.92 (1H, br, NH), 8.05-7.96 (2H, m, aromatic H), 7.65-7.56 (1H, m, aromatic H), 7.50-7.25 (8H, m, aromatic H, H-6), 6.23 (0.5H, t, *J*=6.1 Hz, α-H-1'), 6.13 (0.5H, t, *J*=5.7 Hz, β-H-1'), 4.69 (0.5H, dd, *J*=12.5, 2.5 Hz, β -H-5'), 4.58-4.23 (2.5H, m, H-4', H-5'), 3.85-3.75 (1H, m, H-3'), 3.03-2.92 (0.5H, m, α-H-2'), 2.54-2.48 (1H, m, β-H-2'), 2.13 (0.5H, ddd, *J*=14.0, 7.5, 6.1 Hz, α-H-2'), 1.96 (1.5H, s, α-Me), 1.63 (1.5H, s, β-Me). 2462

 N^4 -Acetyl-(5-*Q*-benzoyl-2,3-dideoxy-3-phenylthio-**D**-*erythro*-pentofuranosyl)cytosine (8c): 1.63 g (4.37 mmol) of 10 and 1.31 g (8.56 mmol) of N^4 -acetylcytosine gave 1.81 g of 8c, 89% yield (α : β = 43 : 57) ;¹H-nmr (CDCl₃) :δ 9.42 (1H, br, NH), 8.20 (0.6H, d, *J*=7.5 Hz, β-H-6), 8.05-7.95 (2.4H, m, aromatic H, α-H-6), 7.68-7.58 (1H, m, aromataic H), 7.55-7.25 (8H, m, aromatic H, H-5), 6.17 (0.4H, dd, *J*=6.4, 3.9 Hz, α-H-1'), 6.07 (0.6H, dd, *J*=6.5, 2.8 Hz, β-H-1'), 4.72-4.25 (3H, m, H-4', H-5'), 3.85 (0.4H, dt, *J*=7.8, 5.0 Hz, α-H-3'), 3.65-3.55 (0.6H, m, β-H-3'), 3.23-3.12 (0.4H, m, α-H-2'), 2.73-2.54 (1.2H, m, β-H-2'), 2.30-2.12 (3.4H, m, α-H-2', Ac).

General procedure for the coupling reactions between 2-phenylthio-2.3-dideoxyribose (2-PhS-2.3-ddr, 16) and silylated pyrimidine bases (7)

Under argon atmosphere, silylated pyrimidine base (7, 8.90 mmol)^{7d} and 1-O-acetyl-5-O-(*tert*-butyldiphenylsilyl)-2,3-dideoxy-2-phenylthio-D-*erythro*-pentofuranose(16, 1.51 g, 2.98 mmol) were dissolved in dry 1,2dichloroethane (15 ml). To this solution, 5.5 ml of 1.0 M solution of SnCl4 in 1,2-dichloroethane was added dropwise at 0 °C, and the mixture was stirred under argon atmosphere at 0 °C for 4 h. The reaction mixture was poured into a saturated aqueous solution of sodium bicarbonate and extracted with dichloromethane three times. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled away under reduced pressure. The residue obtained was purified by silica gel column chromatography (chloroform : methanol= 98 : 2-96 : 4) to give an anomeric mixture of nucleosides. Anomers were separated by recrystallization in the cases of thymidine derivative (18b) and cytidine derivative (18c), or by hplc (ODS; 30 mm ϕ X 250 mm; acetonitrile : water= 80 : 20; 10 ml/min.).

1-[5-*O*-(*tert*-Butyldiphenylsilyl)-2.3-dideoxy-2-phenylthio-β-D-*erythro*-pentofuranosylluracii (**18a**β): 1.51 g (2.98 mmol) of **16** and 0.51 g (4.57 mmol) of uracil gave 1.38 g of **18a**β, 83% yield ; $[\alpha]_D^{28}$ +41.0 ° (*c* 1.12, CHCl₃); ¹H-nmr (CDCl₃) :δ 9.32 (1H, br, NH), 7.72 (1H, d, *J*=8.1 Hz, H-6), 7.67-7.61 (4H, m, aromatic H), 7.50-7.36 (8H, m, aromatic H), 7.28-7.24 (3H, m, aromatic H), 6.08 (1H, d, *J*=5.5 Hz, H-1'), 5.31 (1H, dd, *J*=8.1, 2.0 Hz, H-5), 4.38-4.30 (1H, m, H-4'), 4.08 (1H, dd, *J*=11.7, 2.1 Hz, H-5'), 3.90-3.73 (1H, m, H-2'), 3.69 (1H, dd, *J*=11.7, 2.2 Hz, H-5'), 2.52 (1H, ddd, *J*=13.2, 7.2, 6.0 Hz, H-3'), 2.10 (1H, dt, *J*=13.1, 7.4 Hz, H-3'), 1.10 (9H, s, *tert*-Bu); ¹³C-nmr(CDCl₃) :δ 163.10 (C-4), 150.15 (C-2), 139.50 (C-6), 135.39 (aromatic C), 135.14 (aromatic C), 133.38 (aromatic C), 132.74 (aromatic C), 132.13 (aromatic C), 132.00 (aromatic C), 129.93 (aromatic C), 128.99 (aromatic C), 127.83 (aromatic C), 102.25 (C-5), 89.62 (C-1'), 78.98 (C-4'), 65.20 (C-5'), 51.21 (C-2'), 32.18 (C-3'), 27.00 (quaternary C of *tert*-Bu), 19.34 (Me of *tert*-Bu);

ir (KBr) : v_{max} 1688 (s), 1462 (m), 1429 (m), 1383 (m), 1280 (m), 1114 (m), 1083 (m), 822 (m), 743 (m), 702 (m), 503 (m), 487 (m) cm⁻¹ ; uv(CHCl₃) : λ_{max} 261 nm (log ε 4.10); *Anal*. Calcd for C₃₁H₃₄N₂O₄SSi: C, 66.64; H, 6.13; N, 5.01; S, 5.74. Found: C, 66.60; H, 6.08; N, 5.01; S, 5.88.

1-[5-*O*-(*tert*-Butyldiphenylsilyl)-2.3-dideoxy-2-phenylthio-β-D-*erythro*-pentofuranosyllthymine (**18b**β): 1.51 g (2.98 mmol) of **16** and 0.57 g (4.51 mmol) of thymine gave 1.25 g of **18b**β, 73% yield ; mp 152-154 °C (*n*-hexane-CH₂Cl₂); $[\alpha]_D^{27}$ +38.5 ° (*c* 1.01, CHCl₃); ¹H-nmr (CDCl₃) :δ 9.53 (1H, br, NH), 7.70-7.62 (4H, m, aromatic H), 7.52-7.33 (8H, m, aromatic H), 7.27-7.15 (4H, m, H-6, aromatic H), 6.12 (1H, d, *J*=7.6 Hz, H-1'), 4.28-4.21 (1H, m, H-4'), 4.02 (1H, dd, *J*=11.5, 1.8 Hz, H-5'), 3.89-3.72 (1H, m, H-2'), 3.68 (1H, dd, *J*=11.5, 2.1 Hz, H-5'), 2.54 (1H, ddd, *J*=12.5, 8.0, 4.2 Hz, H-3'), 2.14 (1H, dt, *J*=12.9, 9.2 Hz, H-3'), 1.50 (3H, s, Me), 1.13 (9H, s, *tert*-Bu); ¹³C-nmr(CDCl₃) :δ 163.41 (C-4), 150.39 (C-2), 135.36 (aromatic C), 135.11 (aromatic C), 134.72 (C-6), 133.59 (aromatic C), 132.98 (aromatic C), 132.31 (aromatic C), 131.94 (aromatic C), 129.87 (aromatic C), 128.89 (aromatic C), 128.07 (aromatic C), 127.83 (aromatic C), 111.15 (C-5), 89.07 (C-1'), 77.58 (C-4'), 65.81 (C-5'), 49.77 (C-2'), 32.55 (C-3'), 27.06 (quaternary C of *tert*-Bu), 19.47 (Me of *tert*-Bu), 11.81(Me); ir (KBr) :v_{max} 1702 (s), 1682 (s), 1466 (m), 1116 (m), 1067 (m), 712 (m), 698 (m), 505 (m) cm⁻¹; uv(CHCl₃) :λ_{max} 262 nm (log ε 4.06); *Anal*. Calcd for C₃₂H₃₆N₂O₄SSi: C, 67.10; H, 6.33; N, 4.89; S, 5.60. Found: C, 67.00; H, 6.32; N, 4.87; S, 5.80.

N^4 -Acetyl-1-[5-O-(tert-butyldiphenylsilyl)-2.3-dideoxy-2-phenylthio- β -D-erythro-pentofuranosyl]cytosine

(18cβ.): 1.51 g (2.98 mmol) of 16 and 0.69 g (4.52 mmol) of N^4 -acetylcytosine gave 1.45 g of 18cβ, 81% yield; mp 165-166 °C; $[\alpha]_D^{27}$ +50.4 ° (*c* 1.01, CHCl₃); ¹H-nmr (CDCl₃) :δ 10.52 (1H, br, NH), 8.34 (1H, d, *J*=7.5 Hz, H-6), 7.68-7.61 (4H, m, aromatic H), 7.50-7.35 (8H, m, aromatic H), 7.30-7.24 (3H, m, aromatic H), 7.20 (1H, d, *J*=7.5 Hz, H-5), 6.08 (1H, d, *J*=2.6 Hz, H-1'), 4.55-4.45 (1H, m, H-4'), 4.18 (1H, dd, *J*=11.9, 2.2 Hz, H-5'), 3.88 (1H, dt, *J*=6.3, 3.0 Hz, H-2'), 3.72 (1H, dd, *J*=12.0, 2.6 Hz, H-5'), 2.40 (1H, ddd, *J*=13.3, 9.2, 6.6 Hz, H-3'), 2.27 (3H, s, Ac), 1.94 (1H, dd, *J*=13.3, 5.7, 3.2 Hz, H-3'), 1.11 (9H, s, *tert*-Bu); ¹³C-nmr(CDCl₃) :δ 171.09 (C=O of Ac), 162.92 (C-4), 154.90 (C-2), 144.11 (C-6), 135.48 (aromatic C), 135.33 (aromatic C), 133.01 (aromatic C), 132.86 (aromatic C), 132.61 (aromatic C), 132.34 (aromatic C), 129.99 (aromatic C), 128.99 (aromatic C), 127.86 (aromatic C), 96.64 (C-5), 9.15 (C-1'), 81.21 (C-4'), 64.19 (C-5'), 53.22 (C-2'), 31.48 (C-3'), 27.03 (quaternary C of *tert*-Bu), 24.92 (Me of Ac), 19.34 (Me of *tert*-Bu); ir (KBr) : ν_{max} 1719 (m), 1671 (s), 1626 (m), 1560 (m), 1495 (s), 1392 (m), 1317 (m), 1238 (m), 1114 (m), 1093 (m), 789 (m), 743 (m), 704 (m) cm⁻¹; uv(CHCl₃) : λ_{max} 306 nm (log ε 3.84), 252 nm (log ε 4.18); *Anal.* Calcd for C_{33H37N304}SSi: C, 66.08; H, 6.22; N, 7.01; S, 5.34. Found: C, 65.86; H, 6.24; N, 6.95; S, 5.42.

General procedure for the oxidation and thermal elimination of sulfenic acid of 3'-phenylthionucleosides (8)

3'-Phenylthionucleoside (8, 3.13 mmol) was dissolved in dry 1,2-dichloromethane (30 ml). To this solution, a solution of *m*-chloroperbenzoic acid (0.690 g, 3.40 mmol) in dry dichloromethane (30 ml) was added dropwise at 0 °C, and the mixture was stirred at 0 °C for 2 h. The reaction mixture was poured into a saturated aqueous solution of sodium bicarbonate and extracted with dichloromethane three times. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. The residual amorphous was dissolved in 4-picoline (3 ml) and diluted with xylene (10 ml). This mixture was heated under reflux under argon atmosphere for 4 h. The solvent was evaporated under reduced pressure (2 mmHg). The residual oil was dissolved in dichloromethane and the solution was washed successively with 1% aqueous sulfuric acid and a saturated aqueous solution of sodium bicarbonate. The organic layer was dried over anhydrous magnesium sulfate, and the solution was evaporated pressure. The residue obtained was purified by silica gel column chromatography (dichloromethane : acetone= 85 : 20-70 : 30) to give an anomeric mixture of nucleosides (24). These anomers were separated by hplc (ODS; 30 mm ϕ X 250 mm; acetonitrile : water= 35 : 65-40 : 60; 7.5 ml/min.).

 $\frac{1-(5-O-\text{Benzoyl}-2,3-\text{dideoxy}-D-glycero-pento-2-enofuranosyl)uracil (24a)}{g \text{ of } 24a\beta (55\% \text{ yield}) \text{ and } 0.34 \text{ g of } 24a\alpha (35\% \text{ yield}).}$

1-(5-*O*-Benzoyl-2,3-dideoxy-β-D-*glycero*-pento-2-enofuranosyl)uracil (24aβ): mp 133-136 °C (ethyl acetate, lit.,^{4b} 136-137 °C); $[\alpha]_D^{24}$ -155.8 ° (*c* 0.51, CHCl₃); ¹H-nmr (acetone-*d*₆) :δ 10.48 (1H, br, NH), 8.01 (2H, d, *J*=7.1 Hz, aromatic H), 7.67 (1H, t, *J*=7.4 Hz, aromatic H), 7.54 (2H, t, *J*=7.5 Hz, aromatic H), 7.49 (1H, d, *J*=8.1 Hz, H-6), 7.02-6.96 (1H, m, H-1'), 6.56 (1H, m, H-3'), 6.06 (1H, m, H-2'), 5.29 (1H, d, *J*=8.1 Hz, H-5), 5.21 (1H, br, H-4'), 4.61 (2H, m, H-5'); ¹³C-nmr(acetone-*d*₆) :δ 166.37 (C=O of Bz), 163.80 (C-4), 151.48 (C-2), 140.94 (C-6), 134.49 (C-3'), 134.05 (aromatic C), 130.53 (aromatic C), 130.04 (aromatic C), 129.36 (aromatic C),127.56 (C-2'), 102.66 (C-5), 90.47 (C-1'), 85.26 (C-4'), 65.78 (C-5'); ir (KBr) :ν_{max} 1730 (s), 1700 (s), 1462 (m), 1398 (m), 1263 (s), 1081 (m), 712 (m) cm⁻¹; uv(CHCl₃) :λ_{max} 261 nm (log ε 3.96); *Anal.* Calcd for C₁₆H₁₄N₂O₅: C, 61.14; H, 4.49; N, 8.91. Found C, 60.99; H, 4.36; N, 8.87.

<u>1-(5-O-Benzoyl-2.3-dideoxy- α -D-glycero-pento-2-enofuranosyl)uracii</u> (24a α): [α]_D²⁷ -157.3 ° (c 0.51, CHCl₃); ¹H-nmr (acetone-d₆) : δ 10.39 (1H, br, NH), 8.03 (2H, d, J=7.0 Hz, aromatic H), 7.64 (1H, t, J=7.4 Hz, aromatic H), 7.51 (2H, t, J=7.5 Hz, aromatic H), 7.40 (1H, d, J=8.1 Hz, H-6), 7.10 (1H, dt, J=5.2, 1.5 Hz, H-1'), 6.57 (1H, dt, J=6.0, 1.6 Hz, H-3'), 6.10 (1H, ddd, J=6.0, 2.2, 1.5 Hz, H-2'), 5.68 (1H, d, J=8.1 Hz, H-5), 5.53-5.47 (1H, m, H-4'), 4.52 (1H, dd, J=11.8, 3.5 Hz, H-5'), 4.47 (1H, dd, J=11.8, 4.6 Hz, H-5'), 4.47 (1H, dd,

5'); ¹³C-nmr(acetone- d_6) : δ 166.40 (C=O of Bz), 163.90 (C-4), 151.44 (C-2), 140.85 (C-6), 134.53 (C-3'), 133.95 (aromatic C), 130.68 (aromatic C), 130.10 (aromatic C), 129.31 (aromatic C), 127.63 (C-2'), 103.04 (C-5), 91.16 (C-1'), 85.91 (C-4'), 66.08 (C-5'); ir (KBr) : v_{max} 1710 (s), 1688 (s), 1276 (m), 1247 (m), 1071 (m), 714 (m) cm⁻¹; uv(CHCl₃) : λ_{max} 261 nm (log ϵ 3.99); hrms(FAB) :Calcd for C₁₆H₁₅N₂O₅: 315.0904. Found: 315.0974 (M⁺+H).

 $\frac{1-(5-Q-\text{Benzoyl-2.3-dideoxy-}\mathbf{D}-glycero-\text{pento-2-enofuranosyl})\text{thymine (24b)}: 649 \text{ mg (1.48 mmol) of 8b gave}$ 175 mg of 24b β (36% yield) and 182 mg of 24b α (37% yield).

1-(5-*O*-Benzoyl-2.3-dideoxy-β-D-*glycero*-pento-2-enofuranosyl)thymine (**24b**β): mp 161-163 °C (ethyl acetate), [α]_D²⁷-116.3 ° (*c* 0.51, CHCl₃); ¹H-nmr (CDCl₃) :δ 8.40 (1H, br, NH), 8.01 (2H, d, *J*=7.0 Hz, aromatic H), 7.60 (1H, t, *J*=7.4 Hz, aromatic H), 7.46 (2H, t, *J*=7.6 Hz, aromatic H), 7.11-7.08 (1H, m, H-6), 7.03-6.97 (1H, m, H-1'), 6.42 (1H, dt, *J*=5.9, 1.7 Hz, H-3'), 5.97-5.92 (1H, m, H-2'), 5.20-5.13 (1H, m, H-4'), 4.63 (1H, dd, *J*=12.4, 3.7 Hz, H-5'), 4.57 (1H, dd, *J*=12.5, 3.0 Hz, H-5'), 1.52 (3H, s, Me); ¹³C-nmr(CDCl₃) :δ 166.02 (C=O of Bz), 163.14 (C-4), 150.21 (C-2), 135.11 (C-6), 133.56 (aromatic C), 133.40 (C-3'), 129.63 (aromatic C), 129.37 (aromatic C), 128.68 (aromatic C),127.28 (C-2'), 111.28 (C-5), 89.82 (C-1'), 84.49 (C-4'), 64.83 (C-5'), 12.00 (Me); ir (KBr) : v_{max} 1721 (s), 1707 (s), 1688 (s), 1454 (m), 1294 (m), 1081 (m), 712 (m) cm⁻¹; uv(CHCl₃) : λ_{max} 267 nm (log ε 3.96); *Anal*. Calcd for C₁₇H₁₆N₂O₅: C, 62.19; H, 4.91; N, 8.53. Found: C, 62.28; H, 5.04; N, 8.51.

1-(5-*Q*-Benzoyl-2.3-dideoxy-α-D-*glycero*-pento-2-enofuranosyl)thymine(24bα): mp 164.5-165.5 °C (ethyl acetate); $[α]_D^{27}$ -221.4 ° (*c* 0.49, CHCl₃); ¹H-nmr (CDCl₃) :δ 9.23 (1H, br, NH), 8.04 (2H, d, *J*=7.0 Hz, aromatic H), 7.58 (1H, t, *J*=7.4 Hz, aromatic H), 7.45 (2H, t, *J*=7.5 Hz, aromatic H), 7.14 (1H, dt, *J*=5.3, 1.6 Hz, H-1'), 6.89 (1H, q, *J*=1.1 Hz, H-6), 6.40 (1H, dt, *J*=6.0, 1.6 Hz, H-3'), 5.96 (1H, ddd, *J*=6.0, 2.3, 1.4 Hz, H-2'), 5.45-5.35 (1H, m, H-4'), 4.55-4.43 (2H, m, H-5'), 1.91 (3H, d, *J*=1.3 Hz, Me); ¹³C-nmr(CDCl₃) :δ 166.23 (C=O of Bz), 163.71 (C-4), 150.60 (C-2), 134.89 (C-6), 133.30 (aromatic C), 133.21 (C-3'), 129.65 (aromatic C), 129.46 (aromatic C), 128.46 (aromatic C), 127.46 (C-2'), 111.54 (C-5), 90.38 (C-1'), 85.10 (C-4'), 65.30 (C-5'), 12.53 (Me) ; ir (KBr) :ν_{max} 1721 (s), 1694 (s), 1272 (m), 1251 (m), 1081 (m), 716 (m) cm⁻¹; uv (CHCl₃) :λ_{max} 267 nm (log ε 4.00); *Anal.* Calcd for C₁₇H₁₆N₂O₅: C, 62.19; H, 4.91; N, 8.53. Found: C, 62.32; H, 5.02; N, 8.55.

<u>N⁴-Acetyl-1-(5-Q-benzoyl-2.3-dideoxy-D-glycero-pento-2-enofuranosyl)cytosine (24c)</u>: 1.81 g (3.90 mmol) of 8c gave 145 mg of 24c β (10% yield) and 151 mg of 24c α (11% yield).

*N*⁴-Acetyl-1-(5-*O*-benzoyl-2.3-dideoxy-β-D-*glycero*-pento-2-enofuranosyl)cytosine_(24cβ): mp > 192 °C (decomp.) (dichloromethane-ethyl acetate); $[α]_D^{25}$ +14.2 ° (*c* 1.05, CHCl₃); ¹H-nmr (CDCl₃) :δ 10.32 (1H, br, NH), 7.97 (2H, d, *J*=7.9 Hz, aromatic H), 7.90 (1H, d, *J*=7.5 Hz, H-6), 7.62 (1H, t, *J*=7.4 Hz, aromatic H), 7.48 (2H, t, *J*=7.7 Hz, aromatic H), 7.23 (1H, d, *J*=7.5 Hz, H-5), 7.04-6.97 (1H, m, H-1'), 6.32 (1H, dt, *J*=6.0, 1.6 Hz, H-3'), 6.11-6.05 (1H, m, H-2'), 5.26 (1H, br, H-4'), 4.78 (1H, dd, *J*=12.5, 3.5 Hz, H-5'), 4.51 (1H, dd, *J*=12.6, 2.7 Hz, H-5'), 2.29 (3H, s, Ac); ¹³C-nmr (CDCl₃) :δ 171.04 (C=O of Ac), 166.10 (C=O of Bz), 163.04 (C-4), 155.34 (C-2), 144.31 (C-6), 133.67 (aromatic C), 132.16 (C-3'), 129.55 (aromatic C), 129.19 (aromatic C), 128.61 (aromatic C), 128.00 (C-2'), 97.02 (C-5), 91.67 (C-1'), 85.53 (C-4'), 64.62 (C-5'), 24.88 (Ac); ir (KBr) :v_{max} 1721 (s), 1663 (m), 1489 (m), 1400 (m), 1317 (m), 1292 (m), 1236 (s), 1083 (m), 719 (m) cm⁻¹; uv (CHCl₃) :λ_{max} 306 nm (log ε 3.80), 250 nm (log ε 4.02); *Anal*. Calcd for C₁₈H₁₇N₃O₅: C, 60.84; H, 4.82; N, 11.83. Found: C, 61.19; H, 4.81; N, 11.93.

 N^4 -Acetyl-1-(5-*O*-benzoyl-2.3-dideoxy-α-**D**-glycero-pento-2-enofuranosyl)cytosine (24cα): mp > 190 °C (decomp.) (dichloromethane-ethyl acetate); $[α]_D^{27}$ -368.3 ° (*c* 0.50, CHCl₃); ¹H-nmr (CDCl₃) :δ 10.35 (1H, br, NH), 8.03 (2H, d, *J*=7.0 Hz, aromatic H), 7.65 (1H, d, *J*=7.5 Hz, H-6), 7.58 (1H, t, *J*=7.4 Hz, aromatic H), 7.48-7.40 (3H, m, aromatic H, H-5), 7.09 (1H, dt, *J*=5.2, 1.4 Hz, H-1'), 6.34 (1H, dt, *J*=6.1, 1.5 Hz, H-3'), 6.15 (1H, ddd, J=6.0, 2.2, 1.4 Hz, H-2'), 5.50-5.43 (1H, m, H-4'), 4.55-4.46 (2H, m, H-5'), 2.29 (3H, s, Ac); ¹³C-nmr(CDCl₃) :δ 170.98 (C=O of Ac), 166.22 (C=O of Bz), 162.97 (C-4), 155.18 (C-2), 143.68 (C-6), 133.34 (aromatic C), 131.96 (C-3'), 129.66 (aromatic C), 129.46 (aromatic C), 128.49 (aromatic C), 128.37 (C-2'), 97.16 (C-5), 92.67 (C-1'), 85.78 (C-4'), 65.13 (C-5'), 24.93 (Ac) ; ir (KBr) :v_{max} 1720 (s), 1711 (s), 1663 (s), 1487 (m), 1396 (m), 1315 (m), 1294 (m), 1234 (s), 1073 (m), 719 (m) cm⁻¹; uv (CHCl₃) :λ_{max} 306 nm (log ε 3.81), 250 nm (log ε 4.07); *Anal*. Calcd for C₁₈H₁₇N₃O₅: C, 60.84; H, 4.82; N, 11.83. Found: C, 61.02; H, 4.55; N, 11.93.

General procedure for the oxidation and thermal elimination of sulfenic acid of 2'-phenylthionucleosides (186).

2'-Phenylthionucleoside (18β , 2.81 mmol) was dissolved in dry 1,2-dichloromethane (25 ml). To this solution, a solution of *m*-chloroperbenzoic acid (0.640 g, 2.95 mmol) in dry dichloromethane (25 ml) was added dropwise at 0 °C, and the mixture was stirred at 0 °C for 6 h. The reaction mixture was poured into a saturated aqueous solution of sodium bicarbonate and extracted with dichloromethane three times. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residual amorphous was dissolved in xylene (50 ml). To this solution, tributylamine (1.5 ml, 6.3 mmol) was added, and the mixture was heated under reflux under argon atmosphere for 1 h. The solvent was removed under reduced pressure (2 mmHg). The residue obtained was purified by silica gel column chromatography (chloroform : methanol= 97 : 3-94 : 6) to give the nucleosides (26).

1-[5-*O*-(*tert*-Butyldiphenylsilyl)-2.3-dideoxy-β-D-glycero-pento-2-enofuranosylluracil.(26a): 1.57 g (2.81 mmol) of **18**aβ gave 1.25 g of **26a**, 100% yield; $[\alpha]_D^{24}$ -7.6 ° (*c* 0.50, CHCl₃); ¹H-nmr (CDCl₃) :δ 9.12 (1H, br, NH), 7.78-7.60 (5H, m, H-6, aromatic H), 7.55-7.37 (6H, m, aromatic H), 7.03 (1H, t, *J*=1.8 Hz, H-1'), 6.30 (1H, dt, *J*=6.0, 1.6 Hz, H-3'), 5.86 (1H, m, H-2'), 5.20 (1H, d, *J*=8.3 Hz, H-5), 4.90 (1H, br, H-4'), 3.99 (1H, dd, *J*=11.5, 3.1 Hz, H-5'), 3.87 (1H, dd, *J*=11.7, 3.0 Hz, H-5'), 1.07 (9H, s, *tert*-Bu); ¹³C-nmr(CDCl₃) :δ 163.65 (C-4), 150.84 (C-2), 140.57 (C-6), 135.39 (aromatic C), 135.19 (aromatic C), 134.25 (C-3'), 132.88 (aromatic C), 132.23 (aromatic C), 129.97 (aromatic C), 129.85 (aromatic C), 127.79 (aromatic C), 127.70 (aromatic C), 126.45 (C-2'), 102.45 (C-5), 89.48 (C-1'), 86.93 (C-4'), 64.86 (C-5'), 26.84 (quaternary C of *tert*-Bu), 19.20 (Me of *tert*-Bu); ir (KBr) :ν_{max} 1705 (s), 1690 (s), 1460 (m), 1253 (m), 1112 (m), 1083 (m), 1042 (m), 835 (m), 702 (m) cm⁻¹; uv (CHCl₃) :λ_{max} 262 nm (log ε 3.88); *Anal*. Calcd for C₂₅H₂₈N₂O₄Si: C, 66.94; H, 6.29; N, 6.24. Found: C, 66.86; H, 6.41; N, 6.23.

1-[5-*O*-(*tert*-Butyldiphenylsilyl)-2.3-dideoxy-β-D-glycero-pento-2-enofuranosyllthymine (26b): 1.53 g (2.68 mmol) of **18b**β gave 1.05 g of **26b**, 85% yield; $[\alpha]_D^{25}$ +4.2 ° (*c* 1.05, CHCl₃); ¹H-nmr (CDCl₃) :δ 9.13 (1H, br, NH), 7.68-7.60 (4H, m, aromatic H), 7.45-7.33 (6H, m, aromatic H), 7.16 (1H, d, *J*=1.1 Hz, H-6), 7.05-7.00 (1H, m, H-1'), 6.35 (1H, dt, *J*=5.9, 1.6 Hz, H-3'), 5.87 (1H, m, H-2'), 4.97-4.90 (1H, m, H-4'), 3.92 (1H, dd, *J*=11.1, 3.7 Hz, H-5'), 3.88 (1H, dd, *J*=11.2, 3.9 Hz, H-5'), 1.48 (3H, s, Me), 1.08 (9H, s, *tert*-Bu); ¹³C-nmr(CDCl₃) :δ 163.70 (C-4), 150.75 (C-2), 135.58 (C-6), 135.43 (aromatic C), 135.34 (aromatic C), 134.66 (C-3'), 133.28 (aromatic C), 132.77 (aromatic C), 130.01 (aromatic C), 129.91 (aromatic C), 127.83 (aromatic C), 127.79 (aromatic C), 126.31 (C-2'), 111.12 (C-5), 89.78 (C-1'), 86.89 (C-4'), 65.51 (C-5'), 26.96 (quaternary C of *tert*-Bu), 19.39 (Me of *tert*-Bu), 11.90 (Me); ir (KBr) :v_{max} 1688 (s), 1466 (m), 1251 (m), 1116 (m), 706 (m) cm⁻¹; uv (CHCl₃) :λ_{max} 266 nm (log ε 3.94); hrms(FAB) : Calcd for C₂₆H₃₁N₂O₄Si: 463.0921. Found 463.2070 (M⁺+H).

 2468

J=12.0, 3.3 Hz, H-5'), 2.28 (3H, s, Ac), 1.07 (9H, s, tert-Bu); ¹³C-nmr(CDCl₃) : δ 170.76 (C=O of Ac), 162.85 (C-4), 155.42 (C-2), 145.02 (C-6), 135.58 (aromatic C), 135.42 (aromatic C), 133.16 (aromatic C), 132.85 (C-3'), 132.54 (aromatic C), 130.07 (aromatic C), 130.01 (aromatic C), 127.89 (aromatic C), 127.86 (aromatic C), 127.37 (C-2'), 96.94 (C-5), 91.74 (C-1'), 87.72 (C-4'), 65.06 (C-5'), 26.92 (quaternary C of tert-Bu), 24.89 (Me of Ac), 19.27 (Me of tert-Bu); ir_{max} (KBr) :v 1719 (m), 1669 (s), 1613 (m), 1555 (m), 1491 (s), 1394 (m), 1307 (m), 1238 (m), 1114 (m), 702 (m) cm⁻¹; uv(CHCl₃) : λ_{max} 307 nm (log ε 3.85), 249 nm (log ε 4.01); Anal. Calcd for C₂₇H₃₁N₃O4Si: C, 66.23; H, 6.38; N, 8.58. Found: C, 66.42; H, 6.51; N, 8.65.

REFERENCES

 (a) R. L. K. Carr, T. A. Donovan, Jr., M. N. Sharma, C. D. Vizine, and M. J. Wovkulich, <u>Org. Prep.</u> <u>Proce. Int.</u>, 1990, 22, 245; T. S. Lin, J. H. Yang, and Y. S. Gao, <u>Nucleosides Nucleotides</u>, 1990, 9, 97; C. K. Chu, G. V. Ullas, K. S. Jeong, S. K. Ahn, B. Doboszewski, Z. X. Lin, J. W. Beach, and R. F. Schinazi, J. Med. Chem., 1990, 33, 1536; M. M. Mansuri, J. E. Starrett, Jr., J. A. Wos, D. R. Tortolani, P. R. Brodfuehrer, H. G. Howell, and J. C. Martin, <u>J. Org. Chem.</u>, 1989, 54, 4780; L. W. Dudycz, <u>Nucleosides Nucleotides</u>, 1989, 8, 35; C. K. Chu, V. S. Bhadti, B. Doboszewski, Z. P. Gu, Y. Kosugi, K. C. Pullaiah, and P. V. Roey, <u>J. Org. Chem.</u>, 1989, 54, 2217; H. Shiragami, Y. Irie, H. Shirae, K. Yokozeki, and N. Yasuda, <u>J. Org. Chem.</u>, 1988, 53, 5170; M. Kawana, N. Yamasaki, M. Nishikawa, and H. Kuzuhara, <u>Chemistry Lett.</u>, 1987, 2419; M. J. Robins, F. Hansske, N. H. Low, and J. I. Park, <u>Tetrahedron Lett.</u>, 1984, 25, 367; M. J. Robins, R. A. Jones, and R. Mengel, <u>Can. J. Chem.</u>, 1977, 55, 1251; M. J. Robins, R. A. Jones, and R. Mengel, <u>J. Am. Chem. Soc.</u>, 1976, 98, 8213; R. Marumoto and M. Honjo, <u>Chem. Pharm. Bull.</u>, 1974, 22, 128; A. F. Russel, G. Greenberg, and J. G. Moffatt, <u>J. Am. Chem. Soc.</u>, 1973, 95, 4025; Y. Furukawa, Y. Yoshioka, K. Imai, and M. Honjo, <u>Chem. Pharm. Bull.</u>, 1970, 18, 554.

(b) G. V. Zaitseva, E. Vaaks, and I. A. Mikhailopulo, <u>Dokl. Akad. Nauk USSR</u>, 1989, 33, 53; J. P. Horwitz, J. Chua, M. Noel, and J. T. Donatti, <u>J. Org. Chem.</u>, 1967, 32, 817; T. A. Khwaja and C. Heidelberg, <u>J. Med. Chem.</u>, 1967, 10, 1066.

- 2. H. Mitsuya and S. Broder, Proc. Natl. Acad. Sci. USA, 1986, 83, 1911.
- U. Hamamoto, H. Nakashima, A. Matsui, T. Matsuda, T. Ueda, and N. Yamamoto, <u>Antimicrob. Agents</u> Chemother., 1987, 31, 907; J. Balzarini, G.-J. Kang, H. Dalal, P. Herdwijn, E. De Clercq, S. Broder,

and D. G. Johns, <u>Mol. Pharmacol.</u>, 1987, **32**, 162; T. S. Lin, R. F. Schinazi, and W. H. Prusoff, <u>Biochem, Pharmacol.</u>, 1987, **36**, 2713.

- (a) V. Nair and G. S. Buenger, J. Am. Chem. Soc., 1989, 111, 8205; A. Rosowsky, V. C. Solan, J. G. Sodroski, and R. M. Ruprecht, J. Med. Chem., 1989, 32, 1135; B. Classon, P. J. Garegg, and B. Samuelsson, <u>Acta Chem. Scand. B</u>, 1982, 36, 251; T. Adachi, T. Iwasaki, I. Inoue, and M. Miyoshi, J. Org. Chem., 1979, 44, 1404; R. Mengel and J.-M. Seifert, <u>Tetrahedron Lett.</u>, 1977, 4203; T. C. Jain, I. D. Jenkins, A. F. Russell, J. P. H. Verheyden, and J. G. Moffatt, <u>J. Org. Chem.</u>, 1974, 39, 30.
 (b) S. Dasvid and G. De Sennyey, <u>Carbohydr. Res.</u>, 1980, 82, 45.
- J. Balzarini, A. V. Aerschot, P. Herdewijn, and E. De Clercq, <u>Biochem. Pharmacol.</u>, 1989, 38, 869; M. M. Mansuri, J. E. Starrett, Jr., I. Ghazzouli, M. J. M. Hitchcock, R. Z. Sterzycki, V. Brankovan, T.-S. Lin, E. M. August, W. H. Prusoff, J.-P. Sommeadossi, and J. C. Martin, <u>J. Med. Chem.</u>, 1989, 32, 461; P. Herdewijn, J. Balzarini, M. Baba, R. Pauwels, A. V. Aerschot, G. Janssen, and E. De Clercq, <u>J. Med. Chem.</u>, 1988, 31, 2040; P. Herdewijn, J. Balzarini, E. De Clercq, R. Pauwels, M. Baba, S. Broder, and H. Vanderhaeghe, <u>J. Med. Chem.</u>, 1987, 30, 1270; T. Adachi, Y. Yamada, and I. Inoue, <u>Carbohydr. Chem.</u>, 1979, 73, 113; T. A. Khwaja and C. Heidelberger, <u>J. Med. Chem.</u>, 1969, 12, 543.
- 6. (a) A preliminary report has been published: H. Kawakami, T. Ebata, K. Koseki, H. Matsushita, Y. Naoi, and K. Itoh, <u>Chemistry Lett.</u>, 1990, 1459.
 (b) The same procedure for the synthesis of d4T has been published: L. J. Wilson and D. Liotta, <u>Tetrahedron Lett.</u>, 1990, 31, 1815.

(c) Coupling reaction between silvlated thymine and 2- α -phenylseleno-2,3-dideoxyribose was reported to proceed with good β -selectivity. This nucleoside was also converted to d4T; C. K. Chu, J. R. Babu, J. W. Beach, S. K. Ahn, H. Huang, L. S. Jeong, and S. J. Lee, <u>J. Org. Chem.</u>, 1990, 55, 1418.

- 7. (a) H. Kawakami, H. Matsushita, Y. Naoi, K. Itoh, and H. Yoshikoshi, <u>Chemistry Lett.</u>, 1989, 235.
 (b) H. Kawakami, H. Matsushita, M. Shibagaki, Y. Naoi, K. Itoh, and H. Yoshitake, <u>Chemistry Lett.</u>, 1989, 1365.
 - (c) H. Kawakami, T. Ebata, K. Koseki, H. Matsushita, Y. Naoi, K. Itoh, and N. Mizutani, <u>Heterocycles</u>, 1990, **31**, 569.
 - (d) H. Kawakami, T. Ebata, K. Koseki, K. Matsumoto, H. Matsushita, Y. Naoi, and K. Itoh, Heterocycles, 1990, 31, 2041.
- 8. T. Durst, 'Comprehensive Organic Chemistry: Sulphoxides', Vol. 3, ed. by D. Barton and W. D. Ollis,

Pergamon Press, Ltd., Oxford, 1979, pp. 121-163.

- M. Hoffer, <u>Chem. Ber.</u>, 1960, 93, 2777; J. J. Fox, N. C. Yung, I. Wempen, and M. Hoffer, <u>J. Am.</u> Chem. Soc., 1961, 83, 4066.
- 10. (a) A. J. Hubbard, A. S. Jones, and R. T. Walker, <u>Nucleic Acids Res.</u>, 1984, 12, 6827.
 (b) Z. Kazimierczuk, H. B. Cottam, G. R. Revankar, and R. K. Robins, <u>J. Am. Chem. Soc.</u>, 1984, 106, 6379.
- C. K. Chu, R. Raghavachari, J. W. Beach, Y. Kosugi, and G. V. Ullas, <u>Nucleosides Nucleotides</u>, 1989, 8, 903.
- K. Koseki, T. Ebata, H. Kawakami, H. Matsushita, Y. Naoi, and K. Itoh, <u>Heterocycles</u>, 1990, 31, 423; Levoglucosenone is now available from Yuki Gosei Kogyo Co., Ltd.
- 13. C. P. J. Glaudemans and H. G. Fletcher, Jr., J. Org. Chem., 1963, 38, 204.
- 14. M. Okabe, R.-C. Sun, S. Y.-K. Tam, L. J. Todaro, and D. L. Coffen, J. Org. Chem., 1988, 53, 4780.
- 15. U. Niedballa and H. Vorbruggen, J. Org. Chem., 1974, 39, 3654.
- J. A. Montogomery and H. J. Thomas, <u>J. Heterocycl. Chem.</u>, 1979, 16, 353; D. Horton and M. Sakata, <u>Carbohydr. Res.</u>, 1976, 48, 41; K. J. Ryan, E. M. Acton, and L. Goodman, <u>J. Org. Chem.</u>, 1971, 36, 2646.
- K. C. Nicolaou, T. ladduwahetty, J. L. Randall, and A. Chucholowski, <u>J. Am. Chem. Soc.</u>, 1986, 108, 2466.
- K. Tomioka, T. Ishiguro, Y. Iitaka, and K. Koga, <u>Tetrahedron</u>, 1984, 40, 1312; B. M. Trost and T. N. Salzmann, <u>J. Am. Chem. Soc.</u>, 1973, 95, 6840.
- 19. H. Vorbruggen, K. Krolikiewicz, and B. Bennua, Chem. Ber., 1981, 114, 1234.
- 20β was prepared under the standard conditions (*tert*-BuPh₂SiCl / imidazole / DMF) from ddU synthesized by us (see ref. 7d).
- J.-C. Wu, T. Oatgajm, W. Tong, J.-M. Vial, G. Remaud, and J. Chattopadhyaya, <u>Tetrahedron</u>, 1988, 44, 6705.
- 22. Purchased from Aldrich Chemical Company, Inc.

Received, 24th September, 1991