ENANTIOCONTROLLED SYNTHESIS OF THE C9.27 SEGMENT OF MILBEMYCIN K FROM *(R)-* **AND (S)** - **EPICHLOROHYDRINS**

Seiichi Takano,* Yoshinori Sekiguchi, and Kunio Ogasawara Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan *Abstract* — The C₉₋₂₇ segment (11) of milbemycin K (10) has
Abstract — The C₉₋₂₇ segment (11) of milbemycin K (10) has
Abstract — The C₉₋₂₇ segment (11) of milbemycin K (10) has
been synthesized using two molar

been synthesized using two molar equivalents of **(R)** epichlorohydrin $[(R)-1]$ and one molar equivalent of (S) . epichlorohydrin **[(S)-1]** as chiral building blocks.

Starting with optically active epichlorohydrin (1) we have recently developed an efficient synthesis of optically active 0-benzylglycidol' **(2) (Scheme** 1). Utilizing

synthesis of potentially useful two chiral synthons **(6)** and **(9)** having secondary methyl group employing a [3,3]-Claisen rearrangement and a [2,3]-Wittig rearrange-

Scheme 2

ment via the common acetylene intermediates² (4) (Scheme 2). We report herewith an utilization of these two chiral synthons for the construction of the **C9.27** segment (the northern hemisphere) (11) of an antiparasitic milbemycin K^{3-5} (10) by combination with an additional one molar equivalent of optically active epichlorohydrin molecule (Scheme **3).**

We first examined the construction of the C_{9-20} segment (20) starting with (S)-ester

 $[(S)-6]^2$ originated from (S) -epichlorohydrin $[(S)-1]$ *via* $(R)-O$ -benzylglycidol $[(R)-2]$. Treatment of **(5')-6** with one equivalent of diisobutylaluminum hydride at low temperature allowed partial reduction to give the aldehyde (13) , $[\alpha]_D^2$ ⁶ -20.43[°] *(c)* 1.00, CHC13), in 88% yield. Upon treatment with carbon tetrabromide and triphenylphosphine,⁶ 13 afforded the dibromoolefin (14), $[\alpha]_D^2$ ⁶ -6.67° (c 1.05, CHCl₃) (88%), which was exposed to *n*-butyllithium⁶ to give the terminal acetylene (15), $\lceil \alpha \rceil_D^{24}$ -6.40° (c 1.00, CHCl₃), in 82% yield. Treatment of the acetylene (15) with trimethylaluminum in the presence of zirconocene dichloride^{7,8} followed by n -butyl-

Scheme 4

Reagents and conditions: a, $({^{1}Bu})_{2}$ AlH, toluene, -90 °C, acid work up; b, CBr₄, PPh₃, CH₂Cl₂, 0 °C; c, n-BuLi, THF, -78 °C; d, (i) zirconocene dichloride, Me₃Al, CH₂Cl₂, room temperature, (ii) evaporation, (iii) n-BuLi, hexane, -78 - -30 °C, then (R) -1, -20 °C; e, powdered NaOH, THF, room temperature; f, NaH, acetylene, DMSO, room temperature, then 18 in DMSO, room temperature; g, $tert-Bu(Me)_2SiCl$, imidazole, DMF, room temperature.

lithium formed the complex (16) which on reaction with (R) -epichlorohydrin $[(R)-1]$ in the same flask furnished the chlorohydrin (17), $[\alpha]_D^{24}$ +9.80° (c 1.02, CHCl₃), in 68% yield. The chlorohydrin (17) was then treated with powdered sodium hydroxide in THF to give the epoxide (18), α ₁ β ²⁴ -3.35° (c 1.01, CHCl₃), in 93% yield. Reaction of the epoxide (18) with sodium acetylide prepared in situ in the same DMSO solution afforded the C₉.₂₀ acetylenic alcohol (19), $[\alpha]_D^{25}$ +7.35° (c 1.03, CHCl₃) (80%), which was transformed into the tert-butyldimethylsilyl (TBS) ether (20) , $[\alpha]_D^2$ ⁶ +3.96° *(c)* 1.01, CHCI3), quantitatively (Scheme 4).

On the other hand, the construction of the C_{21-27} segment⁹ (26) was started with $(3R, 4S)$ -eneynol² (9) prepared from (R) -epichlorohydrin $[(R)-1]$ *via* $(S)-O-1$ benzylglycidol $[(S)-2]$. Treatment of the terminal acetylene (21), $[\alpha]_D^{26}$ +18.15° (c) 1.15, CHCl₃), obtained in 96% yield from $(3R, 4S)$ -9 with tetra-n-buty lammonium fluoride, with benzoic acid in the presence of triphenylphosphine and diisopropyl azodicarboxylate¹⁰ afforded the benzoate 22, $[\alpha]_{D}^{25}$ -31.74° (c 1.01, CHCl₃) (75%) with inversion of 3R-center, which on methanolysis gave the $(35, 45)$ -eneynol (23) , $[\alpha]_D^{25}$ -15.38 (c 1.01, CHCl₃), in 97% yield. This compound was hydrogenated in the presence of platinum oxide to give the saturated benzyl ether (24), $[\alpha]_D^2$ -7.72° (c 1.01, CHC13). which then was hydrogenolyzed on palladium hydroxide to give the diol (25) , $[\alpha]_D^{24}$ -7.39° (c 1.01, CHCl₃), in 98% overall yield. Oxygenation of the diol (25) on platinum black1' proceeded regioselectively at the primary hydroxy group to furnish the desired C_{21.27} δ -lactone (26), $[\alpha]_D^{26}$ +49.32° (c 1.03, CHCl₃), in 78% yield, after azeotropic reflux in benzene (Scheme 5).

Having obtained the requisite C_{9-20} (20) and C_{21-27} (26) segments, we next examined the synthesis of the $C_{9.27}$ segment (11) by coupling each other. Treatment of the alkyne (20) with *n*-butyllithium followed by the lactone (26) yielded the unstable ketol (27) which was immediately transformed into the TBS ether (28), $[\alpha]_D^2$ ⁸ -6.20° $(c \t1.03, CHCl₃)$, in 66% overall yield $(83\%$ overall based on consumed 20). Partial hydrogenation of the acetylene (28) in the presence of Lindlar catalyst gave the *Z*olefin (29), $[\alpha]_D^{25}$ -6.31° (c 1.01, MeOH), in 91% yield. Upon oxidation with aqueous

Scheme 5

Reagents and conditions: $a, n-Bu_4NF$, THF, room temperature; b, PhCO₂H, Ph₃P, $iPTOCON=NCO_2$ ^{iPr}, THF, 0 °C; c, K₂CO₃, MeOH, room temperature; d, H₂, PtO₂, AcOEt, room temperature; e, H₂, Pd(OH)₂, MeOH, room temperature; f, (i) O_2 , Pt black, H₂O, 55 "C, (ii) Dean-Stark apparatus, benzene, reflux.

alkaline hydrogen hydroperoxide, 29 gave the epoxide (30) in 96% yield as an inseparable mixture. Reduction of this mixture (30) with the complex¹² generated from diphenyl diselenide and sodium borohydride proceeded in a regioselective way to give the β -ketol (31) in 97% yield as an inseparable mixture of epimers. Very fortunately, the mixture on exposure to hydrofluoric acid at -30 °C in aqueous acetonitrile underwent concurrent desilylation and cyclization to furnish two readily separable spiroacetals, the 'unnatural' α -alcohol (32), $[\alpha]_D^{26}$ +43.95° (c 0.93, CHCl₃), and the 'natural' β -alcohol (33), $[\alpha]_D^{26}$ +35.79° (c 1.03, CHCl₃), in yields of 25 and 45%. Stereochemistry of both compounds could be deduced by NOE experiment in which the former showed significant NOE only between 17 and 25 hydrogens indicating the $19-\alpha$ -hydroxy structure (32), while the latter showed apparent NOE between 17 and 19, 17 and 25, and 19 and 25 hydrogens, respectively, indicating the $19 - \beta - h$ ydroxy structure (33). The latter isomer (32) was readily transformed into the target $C_{9,27}$ segment (11), $[\alpha]_D^{29}$ +44.9° (c 1.10, CHCl₃), in 61% overall yield, by sequential protection of the secondary hydroxy group and cleavage of the benzyl ether by a

Scheme *6*

Reagents and conditions: a, n-BuLi, THF, $-78 - -5$ °C; b, tert-Bu(Me)₂SiCl, imidazole, DMF; c, H₂, Lindlar catalyst, benzene, room temperature; d, 30% H₂O₂, 0.5 N NaOH, aq. MeOH, room temperature; e, PhSeSePh, NaBH4, AcOH (cat.), EtOH, room temperature; f, 4 N HF, aq. MeCN, -30 °C.

Birch reduction via the TBS ether (34), α_{D}^{26} +41.10° (c 0.80, CHCl₃) (Scheme 6). Since direct inversion of the unnatural α -epimer (32) into the natural β -epimer (33) was failed, 32 was first transformed into the ketone (35) , $[\alpha]_D^2$ ⁶ +39.36° (c 0.95, CHC13) (71%), by Swern oxidation,'3 which was then reduced with sodium borohydride in dimethoxyethanel4 to give a separable mixture of 32 and 33 in yields of 37 and 47%, the former of which may be recycled (Scheme 7).

Scheme **7**

Reagents and conditions: a, Swern oxid.; b, NaBH₄, dimethoxyethane, -20 °C

ACKNOWLEDGEMENTS

We thank to DAIS0 Co. Ltd., Osaka, Japan, for donation of *(R)-* and (S)-epichlorohydrins. We are also grateful to the Japan Society for the Promotion of Science for Japanese Junior Scientist for a fellowship (to Y. S.).

REFERENCES

- S. Takano, Y. Sekiguchi, M. Setoh, T. Yoshimitsu, K. Inomata, M. Takahashi, and K. 1. Ogasawara, *Heterocycles,* 1990, **31,** 1715; Reviews on the enantiocontrolled syntheses using chiral O -benzylglycidol, see: (a) S. Takano and K. Ogasawara, J . *Syn. Org. Chem. Jpn.,* 1987, *45,* 1157. (h) *idem, ibid.,* 1989, **47,** 813. (c) **R.** M. Hanson, *Chem. Rev.,* 1991, **91,** 437. (d) **S.** Takano, J. *Pharm. Soc. Jpn.,* 1991, **111,** 647.
- S. Takano, Y. Sekiguchi, and K. Ogasawara, *J. Chem. Soc., Chemm. Commun.,* **1987,** $2.$ 555.
- H. G. Davies and R. H. Green, *Nal. Prod. Rep.,* **1986,** 87 and references cited 3. therein.
- $\overline{4}$. H. G. Davies and R. H. Green, *Chem. Soc. Rev.,* **1991,** 211, 271 and references cited therein.
- $5.$ This segment may also be used for the synthesis of milbemycins α_3 , α_4 , α_9 , α_{10} , and β_2 which possess the same $C_{9,27}$ segment.^{4,5}
- 6. E. J. Corey and P. L. Fnchs, *Tetrahedron Lett.,* **1972,** 3769.

- **7.** cf. (a) E. Negishi and T. Takahashi, *Synthesis,* **1988,** 1. (b) M. Kobayashi, L. F. Valente, and E. Nigishi, *ibid.,* **1980,** 1034.
- 8. cf. D. R. Williams, B. A. Barner, K. Nishitani, and J. G. Phillips, J. *Am. Chem. Soc.,* 1982, **104,** 4708.
- 9. S. Takano, Y. Sekiguchi, and K. Ogasawara, *Heterocycles,* 1989, **29,** 445.
- 10. cf. 0. Mitsunobu, *Synthesis,* **1981,** 1.
- 11. **P.** J. Maurer, H. Takahata, and H. Rapoport, *J. Am. Chem. Soc.,* 1984, **106,** 1095.
- 12. **M.** Miyashita, T. Suzuki, and A. Yoshikoshi, *Tetrahedron Lett.,* 1987, **28,** 4293.
- 13. **A.** J. Mancuso and D. Swern, *Synthesis,* **1981,** 165.
- 14. cf. P. Kocienski, S. D. A. Street, C. Yeates, and S. F. Campbell, J. *Chem. Soc., Perkin Trans. 1,* **1987,** 2171, 2183, 2189.

Received, 15th October, 1991