SYNTHESIS OF CHIRAL LACTONES AND TRIOLS FROM α -Acetyl- γ -Butyrolactones by use of baker's yeast

Mitsuhiro Takeshita*, Hiroko Yanagihara, and Sachiko Yoshida Tohoku College of Pharmacy, 4-4-1 Komatsushima, Aobaku, Sendal 981, Japan

<u>Abstract</u> — Chiral hydroxyethyllactones prepared from α -acetyl- γ -butyrolactones by fermenting with baker's yeast are reduced to give chiral triols.

The utilization of emzymes for the synthesis of chiral compounds has been becoming a powerful tool in synthetic organic chemisrty. Asymmetric reduction of carbonyl compounds with baker's yeast (*Saccharomyces cerevisiae*) gave chiral alcohols which have been employed as chiral building blocks for the synthesis of optically active materials.¹ In this paper, we describe a synthesis of chiral lactones and triols, which could be excellent chiral synthons^{1,2} for the synthesis of chiral compounds, by reduction of acetyl butyrolactones with baker's yeast.

As shown at Table I, α -acetyl- γ -butyrolactone (1a) and α -acetyl- α -methyl- γ -butyrolactone (1b) were treated with baker's yeast for 48 h at room temperature to afford 3S- and 3*R*-(1'S-hydroxyethyl)- γ -butyrolactones (2a and 2c), and 3S- and 3*R*-methyl-3S- and 3*R*-(1'S-hydroxyethyl)- γ -butyrolactones (2b and 2d), respectively. The absolute stereochemistry at C_{1'} of <u>2a-2d</u> was determined as S-configuration by Mosher's,³ modified Mosher's⁴ and Horeau methods.⁵ The corresponding chiral triols, (3*R*, 4*S*)- and (3*S*, 4*S*)-3-hydroxymethyl-1,4-pentanediols (3a, 3c), and (3*R*, 4*S*)- and (3*S*, 4*S*)-3-hydroxymethyl-1,4-pentanediols (3b, 3d) were prepared by LiAlH4 reduction of <u>2a-2d</u>, respectively.

Dedicated to Dr. Masatomo Hamana on the occasion of his 75th birthday.

sub- strate	Yields of 2 (%)		$\left[\alpha\right]_{D}^{a)}$ of 2 (in CHCl ₃)	%ee ^{b)} of 2	Yields of 3 (%)		[α] _D of 3 (in CHCl ₃)
1a	2a	40	+ 36.9 [°] (c= 1.3)	84	3 a	76	- 6.1 ° (c= 1.4)
	20	40	+ 2.9 [°] (c= 1.0)	90	3c	76	+4.4° (c= 1.3)
1b	2 b	36	+ 22.3 [°] (c= 1.6)	80	3 b	84	+16.4° (c= 1.1)
	2 d	40	+ 22.5 [°] (c= 1.6)	90	3d	72	+3.1 [°] (c= 1.5)

a) Temperature: $21-26^{\circ}$. b) Calculated on the ¹H-nmr analysis of their (R)- or (S)-MTPA esters. (see ref. 2)

490

The absolute configuration at C₃ of <u>3a</u> and <u>3c</u> was determined by the ¹H-nmr spectral analysis of the 1,3-dioxanes (4a and 4c) prepared from <u>3a</u> and <u>3c</u>. In the ¹H-nmr spectrum of <u>4a</u>, the coupling constant between H₄ and H₅ was 10 Hz (*trans*), while that of the isomer <u>4c</u> was 3.5 Hz (*cis*). Thus, the stereochemistry at C₅ of <u>4a</u> was concluded to be *R*-configuration, and that of <u>4c</u> was *S*configuration. Therefore, the absolute stereostructures of <u>3a</u> and <u>3c</u> were confirmed as represented in Table I.

The elucidation of the absolute configuration at C₃ of <u>3b</u> and <u>3d</u> was achieved by the C₅-methyl resonance⁶ (in ¹H-nmr spectrum) of 1,3-dloxanes (4b and 4d).

The C₅-methyl resonance in <u>4b</u> was observed at δ 1.05 ppm (axial), while that of <u>4d</u> was at δ 0.73 ppm (equatorial), then the absolute configuration of each C₅ at <u>4b</u> and <u>4d</u> was determined as *R* and *S*, respectively (Scheme 1). Consequently, the stereochemistry of <u>3b</u> and <u>3d</u> was established as shown in Table I.

Scheme 1

Thus, optically active 3-(1'-hydroxyethyl)-y-butyrolactones (2a-2d), and 3-hydroxymethyl-1,4-

propanediols (3a-3d) were prepared from α -acetyl- γ -butyrolactones (1a and 1b) by use of baker's yeast.

Those lactones and triols are useful for the synthesis of chiral compounds.

REFERENCES AND NOTE

- R. Csuk and B. I. Glanzer, Chem. Rev., 1991, <u>91</u>, 49; J. B. Jones, Tetrahedron, 1986, <u>42</u>, 3351 and references cited therein.
- 2. For example, see review: S. Takano and K. Ogasawara, J. Syn. Org. Chem. Jpn., 1989, 47, 813.
- J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, <u>34</u>, 2543; J. A. Dale and H.S. Mosher, J. Am. Chem. Soc., 1973, <u>95</u>, 512.
- 4. The $\Delta\delta$ values (ppm) obtained for (S) and (R)-MTPA esters of <u>2a-2d</u> (measured by a 400 MHz spectrometer). $\Delta\delta$ (ppm) = δ [(R)-MTPA derivative] δ [(S)-MTPA derivative]

See: S. Takano, M. Takahashi, M. Yanase, Y. Sekiguchi, Y. Iwabuchi, and K. Ogasawara, *Chemistry Lett.*, <u>1988</u>, 1827; T. Kusumi, Y. Fujita, I. Ohtani, and H. Kakisawa, Tetrahedron *Lett.*, 1991, <u>32</u>, 2923; M. Natsume, K. Yasui, S. Kondo, and S. Marumo, *Tetrahedron Lett.*, 1991, <u>32</u>, 3087.

- By esterification of 2a-2d with 2-phenylbutanoic acid anhydride, only (-)-2-phenylbutanoic acid was recovered, thus 1'S-configuration was determined. See: A. Horeau, ' Stereochemistry Fundamental and Methods ', Vol. 3, ed. by H. B. Kagan, Georg Thieme Publishers, Stuttgart, 1977, p. 52.
- A. W. Bogatskij, J. J. Samitow, A. I. Gren, and S. G. Sobolewa, *Tetrahedron*, 1975, <u>31</u>, 489;
 M. Anteunis and R. Camerlynck, *Tetrahedron*, 1975, <u>31</u>, 1841.

Received, 30th October, 1991