# AN EFFICIENT SYNTHESIS OF OPTICALLY ACTIVE 4-BENZYLOXY-3-HYDROXY-1-BUTYNE AND ITS CROSS-COUPLING REACTION

Seiichi Takano,<sup>\*a)</sup> Masashi Akiyama,<sup>b)</sup> Takumichi Sugihara,<sup>a)</sup> and Kunio Ogasawara<sup>a)</sup>

a) Pharmaceutical Institute, Tohoku University, Aobayama,
 Sendai 980, Japan b) Fujigotemba Research Laboratories,
 Chugai Pharmaceutical Co. Ltd., Shizuoka 412, Japan

<u>Abstract</u> — An efficient procedure for the synthesis of optically active 4-benzyloxy-3-hydroxy-1-butyne (12: R=H) has been established starting with optically active tartrate ester. Cross-coupling reaction of the resulted acetylene (12: R=H) with some aromatic halides (13a~h) and transformation of the arylacetylenes (14a~h), thus obtained, into the allylic amine derivatives (17a~h) have also been examined via the allylic alcohol intermediates (15a~h) by sequential stereoselective reduction and [3,3] sigmatropic rearrangement.

Recently, we have developed<sup>1</sup> an efficient general method for the preparation of chiral 3-hydroxyacetylene functionalities (6) starting from terminal allylic alcohols (1) by the Katsuki-Sharpless epoxidation, followed by the *n*-butyllithium-promoted double elimination reaction of the chloroepoxy intermediates (3) in tetrahydrofuran (THF) (Scheme 1). This procedure using chiral tartrate ester as chiral inducer, however, seemed to be less efficient for the preparation of optically pure 4-benzyloxy-3-hydroxy-1-butyne<sup>2</sup> (12: R=H), because its methoxy analogue (12:



#### Scheme 1

R=OMe) could have been directly obtained from chiral tartrate ester (7) preserving one of its chiral centers via 8 and 9 by the lithium amide promoted double elimination reaction in liquid ammonia<sup>3</sup> (Scheme 2). In connection to our synthesis of the mycinolide antibiotics<sup>2d</sup> as well as other synthetic projects,<sup>2</sup> we report herewith an efficient synthesis of 4-benzyloxy-3-hydroxy-1-butyne (12: R=H) by employing the *n*-butyllithium-promoted double elimination procedure<sup>1</sup> which does not require generation of lithium amide in liquid ammonia.

We next examined the cross-coupling reaction<sup>2a</sup> between the resulted chiral terminal acetylene (12: R=H) and some aromatic halides (13a~h) under sonication conditions<sup>2a,4</sup> to obtain the corresponding arylacetylene derivatives (14a~h). Using these coupling products we further examined the synthesis of optically active allylic amine derivatives (17a~h) by sequential stereoselective reduction followed by [3,3] sigmatropic rearrangement<sup>5,6</sup> via the allylic alcohols (15a~h) and the imidate intermediates (16a~h) thereof.

We first treated the chloride (9: R=H), obtained from diethyl L-tartrate (7) via the threitol derivative<sup>7</sup> (8: R=H), with an excess of *n*-butyllithium (3~7 equiv.) in THF at  $-50 \sim -10$  °C which could have smoothly converted the chloroepoxides (3) into the 3-hydroxyacetylenes<sup>1</sup> (6). Contrary to our expectation, the reaction, however, did not



complete under these conditions which gave rise to a mixture of the acetylene (12: R=H) and its precursor vinyl chloride (11: R=R'=H). Since exclusive formation of the acetylene (12: R=H) could not be realized with more excessive use of *n*-butyllithium even at higher temperature, we added N,N'-dimethylpropyleneurea (DMPU) as co-solvent which dramatically accelerated the double elimination reaction to afford the desired acetylene (12: R=H) as a sole product. The same effect was also observed with the addition of hexamethylphosphoric triamide (HMPA) as co-solvent.<sup>8</sup> The yield of (12: R=H) was reached to 96~97% when the chloride (9) was exposed to eight equivalents of *n*-butyllithium in THF in the presence of eight equivalents of DMPU or HMPA.

It is noteworthy that the original chiral integrity of tartrate ester (7) was virtually preserved under these conditions which could be ascertained ( $\geq 98\%$  ee) by <sup>1</sup>H nmr (500 MHz) examination of its *R*- and *S*- $\alpha$ -methoxy- $\alpha$ -trifluoromethylphenylacetates (MTPA esters).<sup>9</sup>

833



Table 1: Yields and specific rotations of the products (14, 15, and 17)

| Entry | 13                                        | 14: %: $[\alpha]_{D}^{a}$ (c) | 15: %: [α] <sub>D</sub> <sup>a</sup> (c) | 17: %: [α] <sub>D</sub> <sup>a</sup> (c) |
|-------|-------------------------------------------|-------------------------------|------------------------------------------|------------------------------------------|
| 1     | 13a: C <sub>6</sub> H <sub>5</sub> I      | 14a: 90.0: +1.46° (0.68)      | <b>15a</b> : 81.3: -1.55° (1.10)         | 17a: 49.5: -18.5° (6.96)                 |
| 2     | 13b: 4-MeC <sub>6</sub> H <sub>4</sub> I  | 14b: 93.0: +4.00° (1.00)      | <b>15b</b> : 92.7: -1.94° (1.03)         | 17b: 0 <sup>b</sup>                      |
| 3     | 13c: 2-F-C <sub>6</sub> H <sub>4</sub> I  | 14c: 76.2: +5.28° (1.34)      | <b>15c</b> : 80.2: +3.40° (1.32)         | <b>17c</b> : 18.1: -12.7° (1.62)         |
| 4     | 13d: 3-F-C <sub>6</sub> H <sub>4</sub> I  | 14d: 77.5: +32.8° (1.28)      | <b>15d</b> : 83.1: +4.18° (1.30)         | <b>17d</b> : 15.5: -21.6° (1.37)         |
| 5     | 13e: 4-F-C <sub>6</sub> H <sub>4</sub> I  | 14e: 77.1: +3.78° (1.30)      | 15e: 78.6: +1.04° (1.15)                 | 17e: 31.1: -16.7° (3.08)                 |
| 6     | 13f: 4-MeOC <sub>6</sub> H <sub>4</sub> I | 14f: 69.5: +9.28° (1.22)      | 15f: 72.8: -5.09° (1.02)                 | 17f: 0 <sup>b</sup>                      |
| 7     | 13g: 2-I-thiophene                        | 14g: 67.2; +5.46° (1.15)      | <b>15g</b> : 89.6: -2.14° (1.12)         | <b>17g</b> : 9.9; +14.6° (0.83)          |
| 8     | 13h: 2-Br-pyridine                        | 14h: 83.2: +3.10° (1.26)      | 15h: <u>67.9: +1.05° (1.24)</u>          | <u>17</u> h: 0 <sup>b</sup>              |

(a) Measured in CHCl<sub>3</sub> at 25±5 °C. (b) Stable imidate (16) was not formed.

Cross-coupling reaction of the acetylene (12: R=H) with eight aromatic halides  $(13a \sim h)$  proceeded without difficulty in triethylamine in the presence of bis(triphenylphosphine)palladium(II) chloride and copper(I) iodide under sonication conditions<sup>2a,4</sup> to afford the corresponding arylacetylenes (14a~h), respectively, in satisfactory yields. Refluxing the arylacetylenes (14a~h) with lithium aluminum hydride in THF<sup>2a</sup> gave the corresponding allylic alcohols (15a~h) having *E*-configuration, selectively, in good yields.

Transformation<sup>5</sup> of allylic alcohols (15a - h) into the corresponding allylic amine derivatives (17a - h) via the imidate intermediates (16a - h), however, brought about

limited success mostly due to difficulty in the formation of the imidates (16) though the subsequent [3,3] signatropic reaction seemed to proceed smoothly (Scheme 3: Table 1).

| Table | 2:      | Spectral | data | of | the | compounds   | (14, 15, | and | 17) |       |    |
|-------|---------|----------|------|----|-----|-------------|----------|-----|-----|-------|----|
| I     | r (filn | n)       |      |    | ιH  | nmr (CDCl3) | 5<br>5   |     | ms  | (m/z) | Ex |

|     | Ir (film)                 | <sup>1</sup> H nmr (CDCl <sub>3</sub> ) δ         | ms (m/z)   | Exact mass                                                         |  |  |
|-----|---------------------------|---------------------------------------------------|------------|--------------------------------------------------------------------|--|--|
|     | v max (cm <sup>-1</sup> ) |                                                   |            | Anal. Calcd : Found                                                |  |  |
| 14a | 3400, 2230                | 2.58 (d, J=4.8 Hz, 1H), 3.64 (dd, J=10.4, 7.3 Hz, | 252 (M+),  | $C_{17}H_{16}O_2$ (M <sup>+</sup> )                                |  |  |
|     |                           | 1H), 3.74 (dd, J=10.4, 3.8 Hz, 1H), 4.63 (s, 2H), | 235, 131   | 252.1150 252.1172                                                  |  |  |
|     | i                         | 4.77 (ddd, J=7.3, 4.8, 3.8 Hz, 1H), 7.20-7.45     | (100%), 91 |                                                                    |  |  |
|     |                           | (m, 10H)                                          |            |                                                                    |  |  |
| 14b | 3420, 2230                | 2.32 (s, 3H), 2.62 (d, J=4.6 Hz, 1H), 3.63 (dd,   | 266 (M+),  | $C_{18}H_{18}O_2$ (M <sup>+</sup> )                                |  |  |
|     | · ·                       | J=10.0, 7.4 Hz, 1H), 3.73 (dd, J=10.0, 3.8 Hz,    | 249, 145   | 266.1306 266.1317                                                  |  |  |
|     |                           | 1H), 4.63 (s, 2H), 4.76 (ddd, J=7.4, 4.6, 3.8 Hz, | (100%), 91 |                                                                    |  |  |
|     |                           | 1H), 7.07 (d, J=8.6 Hz, 2H), 7.22-7.38 (m, 7H)    |            |                                                                    |  |  |
| 14c | 3420, 2240                | 2.67 (d, J=4.6 Hz, 1H), 3.66 (dd, J=10.0, 6.9 Hz, | 270 (M+),  | $C_{17}H_{15}O_2F$ (M <sup>+</sup> )                               |  |  |
|     |                           | 1H), 3.75 (dd, J=10.0, 3.9 Hz, 1H), 4.64 (s, 2H), | 252, 149   | 270.1055 270.1069                                                  |  |  |
|     |                           | 4.78 (ddd, J=6.9, 4.6, 3.9 Hz, 1H), 7.04 (m, 2H), | (100%), 91 |                                                                    |  |  |
|     |                           | 7.16-7.44 (m, 7H)                                 |            |                                                                    |  |  |
| 14d | 3400, 2230                | 2.62 (br, 1H), 3.64 (dd, J=9.9, 7.4 Hz, 1H), 3.73 | 270 (M+),  | C <sub>17</sub> H <sub>15</sub> O <sub>2</sub> F (M <sup>+</sup> ) |  |  |
|     |                           | (dd, J=9.9, 3.8 Hz, 1H), 4.63 (s, 2H), 4.75 (m,   | 252, 149   | 270.1055 270.1080                                                  |  |  |
|     |                           | 1H), 6.94-7.37 (m, 9H)                            | (100%), 91 |                                                                    |  |  |
| 14e | 3410, 2240                | 2.59 (d, J=4.7 Hz, 1H), 3.63 (dd, J=9.4, 6.9 Hz,  | 270 (M+),  | C <sub>17</sub> H <sub>15</sub> O <sub>2</sub> F (M <sup>+</sup> ) |  |  |
|     |                           | 1H), 3.72 (dd, J=9.4, 4.1 Hz, 1H), 4.63 (s, 2H),  | 252, 149   | 270.1055 270.1035                                                  |  |  |
| i   |                           | 4.75 (ddd, J=6.9, 4.7, 4.1 Hz, 1H), 6.96 (dd,     | (100%), 91 |                                                                    |  |  |
|     |                           | J=8.6, 8.6 Hz, 2H), 7.23-7.43 (m, 7H)             |            |                                                                    |  |  |
| 14f | 3440, 2230                | 2.57 (d, J=4.6 Hz, 1H), 3.63 (dd, J=10.2, 7.3 Hz, | 282 (M+),  | C18H18O3 (M <sup>+</sup> )                                         |  |  |
|     |                           | 1H), 3.73 (dd, J=10.2, 3.7 Hz, 1H), 3.78 (s, 3H), | 265, 161   | 282.1256 282.1268                                                  |  |  |
| i   |                           | 4.63 (s, 2H), 4.76 (ddd, J=7.3, 4.6, 3.7 Hz, 1H), | (100%), 91 |                                                                    |  |  |
|     |                           | 6.79 (d, J=8.7 Hz, 2H), 7.24-7.38 (m, 7H)         |            | <u></u>                                                            |  |  |
| 14g | 3420, 2230                | 2.61 (d, J=4.6 Hz, 1H), 3.63 (dd, J=9.8, 7.4 Hz,  | 258 (M+),  | C <sub>15</sub> H <sub>14</sub> O <sub>2</sub> S (M <sup>+</sup> ) |  |  |
|     |                           | 1H), 3.75 (dd, J=9.8, 3.9 Hz, 1H), 4.61 (s, 2H),  | 137        | 258.0714 258.0730                                                  |  |  |
|     |                           | 4.76 (ddd, J=7.4, 4.6, 3.9 Hz, 1H), 6.92 (dd,     | (100%), 91 |                                                                    |  |  |
|     |                           | J=6.2, 2.9 Hz, 1H), 7.20 (m, 2H), 7.24-7.36 (m,   |            |                                                                    |  |  |
|     |                           | 5H)                                               |            |                                                                    |  |  |
| 14h | 3360, 2230                | 3.06 (br, 1H), 3.67 (dd, J=9.8, 7.4 Hz, 1H), 3.78 | 253 (M+),  | $C_{16}H_{15}NO_2$ (M <sup>+</sup> )                               |  |  |

|     |      | (dd, J=9.8, 3.8 Hz, 1H), 4.58 (d, J=12.0 Hz, 1H), | 235, 132,              | 253.1103 253.1094                                                  |
|-----|------|---------------------------------------------------|------------------------|--------------------------------------------------------------------|
|     |      | 4.64 (d, J=12.0 Hz, 1H), 4.79 (dd, J=7.4, 3.8 Hz, | 91 (100%)              |                                                                    |
|     |      | 1H), 7.15-7.44 (m, 7H), 7.60 (ddd, J=7.8, 7.8,    |                        |                                                                    |
|     |      | 1.4 Hz, 1H), 8.52 (br s, 1H)                      |                        |                                                                    |
| 15a | 3430 | 2.55 (d, J=3.2 Hz, 1H), 3.44 (dd, J=9.6, 8.0 Hz,  | 254 (M+),              | C <sub>17</sub> H <sub>18</sub> O <sub>2</sub> (M <sup>+</sup> )   |
|     |      | 1H), 3.61 (dd, J=9.6, 3.4 Hz, 1H), 4.51 (m, 1H),  | 236, 133               | 254.1307 254.1319                                                  |
|     |      | 4.59 (s, 2H), 6.15 (dd, J=16.2, 6.5 Hz, 1H), 6.68 | (100%), 91             |                                                                    |
|     |      | (dd, J=16.2, 1.3 Hz, 1H), 7.16-7.40 (m, 10H)      |                        |                                                                    |
| 15b | 3420 | 2.35 (s, 3H), 2.58 (d, J=3.2 Hz, 1H), 3.47 (dd,   | 268 (M+),              | C <sub>18</sub> H <sub>20</sub> O <sub>2</sub> (M <sup>+</sup> )   |
|     |      | J=10.0, 7.9 Hz, 1H), 3.62 (dd, J=10.0, 3.4 Hz,    | 250, 147               | 268.1463 268.1439                                                  |
|     |      | 1H), 4.52 (m, 1H), 4.60 (s, 2H), 6.13 (dd,        | (100%), 91             |                                                                    |
|     |      | J=16.3, 6.3 Hz, 1H), 6.66 (d, J=16.3 Hz, 1H),     |                        |                                                                    |
| l   |      | 7.11 (d, J=9.1 Hz, 2H), 7.27 (d, J=9.1 Hz, 2H),   |                        |                                                                    |
|     |      | 7.30-7.40 (m, 5H)                                 |                        |                                                                    |
| 15c | 3450 | 2.40 (br, 1H), 3.44 (dd, J=9.7, 7.9 Hz, 1H), 3.61 | 272 (M+),              | C <sub>17</sub> H <sub>17</sub> O <sub>2</sub> F (M <sup>+</sup> ) |
|     |      | (dd, J=9.7, 3.4 Hz, 1H), 4.52 (m, 1H), 4.58 (s,   | 237, 151               | 272.1212 272.1218                                                  |
|     |      | 2H), 6.25 (dd, J=16.2, 6.1 Hz, 1H), 6.82 (d,      | (100%), 91             |                                                                    |
|     |      | J=16.2 Hz, 1H), 6.92-7.44 (m, <u>9H)</u>          |                        |                                                                    |
| 15d | 3420 | 2.50 (br, 1H), 3.43 (dd, J=9.7, 7.9 Hz, 1H), 3.60 | 272 (M+),              | C <sub>17</sub> H <sub>17</sub> O <sub>2</sub> F (M <sup>+</sup> ) |
|     |      | (dd, J=9.7, 7.9 Hz, 1H), 4.50 (m, 1H), 4.58 (s,   | 255, 151               | 272.1212 272.1186                                                  |
|     |      | 2H), 6.15 (dd, J=16.4, 5.9 Hz, 1H), 6.64 (d,      | (100%), 91             |                                                                    |
|     |      | J=16.4 Hz, 1H), 6.90 (m, 1H), 7.08 (m, 1H),       |                        |                                                                    |
|     |      | 7.23 (m, 1H), 7.27-7.40 (m, 6H)                   |                        |                                                                    |
| 15e | 3430 | 2.56 (d, J=3.3 Hz, 1H), 3.44 (dd, J=9.8, 7.8 Hz,  | 272 (M <sup>+</sup> ), | C <sub>17</sub> H <sub>17</sub> O <sub>2</sub> F (M <sup>+</sup> ) |
|     |      | 1H), 3.61 (dd, J=9.8, 3.4 Hz, 1H), 4.50 (m, 1H),  | 198, 151,              | 272.1212 272.1209                                                  |
|     |      | 4.58 (s, 2H), 6.06 (dd, J=16.2, 6.1 Hz, 1H), 6.64 | 91 (100%)              |                                                                    |
|     |      | (d, J=16.2 Hz, 1H), 6.97 (dd, J=8.9, 8.9 Hz, 2H), |                        |                                                                    |
|     |      | 7.24-7.39 (m, 7H)                                 |                        |                                                                    |
| 15f | 3460 | 2.55 (d, J=2.9 Hz, 1H), 3.45 (dd, J=9.8, 8.6 Hz,  | 284 (M <sup>+</sup> ), | C <sub>18</sub> H <sub>20</sub> O <sub>3</sub> (M <sup>+</sup> )   |
|     |      | 1H), 3.61 (dd, J=9.8, 3.4 Hz, 1H), 3.79 (s, 3H),  | 253, 163               | 284.1412 284.1395                                                  |
|     |      | 4.49 (m, 1H), 4.59 (s, 2H), 6.02 (dd, J=16.3, 6.3 | (100%), 91             |                                                                    |
|     |      | Hz, 1H), 6.62 (d, J=16.3 Hz, 1H), 6.68 (d, J=8.9  |                        |                                                                    |
|     |      | Hz, 2H), 7.30 (d, J=8.9 Hz, 2H), 7.28-7.38 (m,    |                        |                                                                    |
|     |      | 5H)                                               |                        |                                                                    |
| 15g | 3440 | 2.22 (br, 1H), 3.40 (dd, J=9.7, 8.2 Hz, 1H), 3.58 | 260 (M <sup>+</sup> ), | C <sub>15</sub> H <sub>15</sub> O <sub>2</sub> S (M <sup>+</sup> ) |
|     |      | (dd, J=9.7, 3.4 Hz, 1H), 4.45 (m, 1H), 4.57 (s,   | 229, 139,              | 260.0871 260.0896                                                  |
|     |      | 2H), 5.98 (dd, J=16.0, 5.9 Hz, 1H), 6.79 (d,      | 91 (100%)              |                                                                    |
|     |      | J=16.0 Hz, 1H), 6.92 (d, J=3.7 Hz, 2H), 7.12 (dd, |                        |                                                                    |
|     |      | J=3.7, 3.7 Hz, 1H), 7.26-7.38 (m, 5H)             |                        |                                                                    |

| 15h | 3400        | 2.60 (br, 1H), 3.45 (dd, J=9.5, 7.9 Hz, 1H), 3.68     | 255 (M <sup>+</sup> ), | C <sub>16</sub> H <sub>17</sub> NO <sub>2</sub> (M <sup>+</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-------------|-------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |             | (dd, J=9.5, 3.4 Hz, 1H), 4.60 (s, 2H), 4.60 (m,       | 136                    | 255.1259 255.1239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |             | 1H), 6.64 (dd, J=15.9, 3.4 Hz, 1H), 6.84 (d,          | (100%), 91             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             | J=15.9 Hz, 1H), 7.05-7.42 (m, 7H), 7.63 (ddd,         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             | J=7.7, 7.7, 1.7 Hz, 1H), 8.54 (br d, J=4.6 Hz, 1H)    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17a | 3430, 3330, | 4.07 (dd, J=5.4, 1.1 Hz, 2H), 5.56 (dd, J=7.1,        | 363, 361               | C <sub>19</sub> H <sub>17</sub> NO <sub>2</sub> <sup>35</sup> Cl <sup>37</sup> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 1700        | 5.7 Hz, 1H), 5.79 (ddt, J=15.9, 5.4, 1.1 Hz, 1H),     | (M+-HCl),              | (M <sup>+</sup> -HCl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |             | 5.95 (ddt, J=15.9, 5.7, 1.1 Hz, 1H), 6.88 (d, J=7.1   | 130, 91                | 363.0607 363.0580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |             | Hz, 1H), 7.20-7.44 (m, 10H)                           | (100%)                 | $C_{19}H_{17}NO_2{}^{35}Cl_2$ (M <sup>+</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             |                                                       |                        | HCl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |             |                                                       |                        | 361.0637 361.0628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17c | 3430, 3330, | 4.03 (d, J=5.0 Hz, 2H), 4.49 (s, 2H), 5.68 (m,        | 310, 308               | $C_{12}H_{10}NO_2F^{35}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{$ |
|     | 1705        | 1H), 5.74 (dt, J=15.6, 5.0 Hz, 1H), 5.96 (dd,         | (M+-                   | (M <sup>+</sup> -C <sub>7</sub> H <sub>7</sub> O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |             | J=15.6, 5.7 Hz, 1H), 7.04-7.66 (m, 9H)                | C7H7O),                | 309.9782 309.9771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |             |                                                       | 148, 91                | C <sub>12</sub> H <sub>10</sub> NO <sub>2</sub> F <sup>35</sup> Cl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             |                                                       | (100%)                 | (M <sup>+</sup> •C <sub>7</sub> H <sub>7</sub> O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |             |                                                       |                        | 307.9812 307.9819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17d | 3430, 3330, | 4.07 (d, J=4.6 Hz, 2H), 4.52 (s, 2H), 5.54 (dd,       | 310, 308               | $C_{12}H_{10}NO_2F^{35}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{37}Cl_2^{$ |
|     | 1705        | J=7.4, 5.3 Hz, 1H), 5.80 (dt, J=15.7, 4.6 Hz, 1H),    | (M+-                   | $(M^+-C_7H_7O)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             | 5.94 (dd, J=15.7, 5.3 Hz, 1H), 6.89 (d, J=7.4 Hz,     | C7H7O),                | 309.9782 309.9764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ł   |             | 1H), 6.94-7.13(m, 3H)                                 | 148, 91                | C <sub>12</sub> H <sub>10</sub> NO <sub>2</sub> F <sup>35</sup> Cl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             |                                                       | (100%)                 | (M <sup>+</sup> -C <sub>7</sub> H <sub>7</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |             |                                                       |                        | 307.9812 307.9786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17e | 3420, 3330, | 4.07 (dd, J=4.6, 0.6 Hz, 2H), 4.52 (s, 2H), 5.53      | 309, 307               | C <sub>12</sub> H9NO <sub>2</sub> F <sup>35</sup> Cl <sub>3</sub> (M <sup>+</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 1710        | (dd, J=7.0, 5.7 Hz, 1H), 5.78 (dt, J=15.5, 4.6 Hz,    | (M+-                   | C7H8O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |             | 1H), 5.94 (ddt, $J=15.5$ , 5.7, 0.6 Hz, 1H), 6.86 (d, | C7H8O),                | 306.9734 306.9762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |             | J=7.0 Hz, 1H), 7.04 (dd, J=8.9, 8.9 Hz, 2H),          | 148, 91                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             | 7.20-7.38 (m, 7H)                                     | (100%)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17g | 3410, 3320, | 4.09 (d, J=4.6 Hz, 2H), 4.47 (s, 2H), 5.81 (m,        | 297, 295               | C <sub>10</sub> H <sub>18</sub> NOS <sup>35</sup> Cl <sub>3</sub> (M <sup>+</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 1705, 1670  | 1H), 5.90 (dt, $J=15.2$ , 4.6 Hz, 1H), 6.02 (dd,      | (M+-                   | C7H7O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |             | J=15.2, 5.1 Hz, 1H), 6.92 (m, 1H), 7.00 (m,           | C7H7O),                | 294.9392 294.9429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | :           | 2H), 7.20-7.44 (m, 6H)                                | 178, 91                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |             |                                                       | (100%)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## EXPERIMENTAL SECTION

Optical rotations were measured with a JASCO-DIP-370 digital polarimeter. Ir spectra were measured with a JASCO-IR-700 spectrophotometer. <sup>1</sup>H Nmr spectra were recorded on JEOL-JNM-FX90A (90 MHz) and JEOL-JNM-GX500 (500 MHz) spectrometers. Mass spectra were measured with a JEOL JMS-DX303 instrument. Reactions were carried out under argon.

#### (2S,3S)-1-Benzyloxy-4-chloro-2,3-(O-isopropylidene)butane-2,3-diol

(9: R=H) — A mixture of the alcohol<sup>7</sup> (8: R=H) (3.20 g, 12.7 mmol), prepared from diethyl L-tartrate (7), and triphenylphosphine (4.98 g, 19.0 mmol) was refluxed for 30 h. After cooling the mixture was filtered through Celite pad and evaporated under reduced pressure. The residue was purified on a silica gel column (100 g) using Et<sub>2</sub>O-hexane (1:4 v/v) as eluent to give the chloride (9: R=H) (3.35 g, 98%) as a colorless oil;  $[\alpha]_D^{28}$  +2.09° (c 1.05, CHCl<sub>3</sub>). Ir (film) v max: 1380, 1370, 840, 740, 700 cm<sup>-1</sup>; <sup>1</sup>H nmr (CDCl<sub>3</sub>)  $\delta$ : 1.44 (s, 6H), 3.48-3.84 (m, 4H), 3.92-4.24 (m, 2H), 4.59 (s, 2H), 7.33 (s, 5H); ms (m/z): 272, 270 (M<sup>+</sup>), 91 (100%). Exact mass Calcd for C<sub>14</sub>H<sub>19</sub>O<sub>3</sub><sup>37</sup>Cl: 272.0993 and for C<sub>14</sub>H<sub>19</sub>O<sub>3</sub><sup>35</sup>Cl: 270.1023. Found: 272.1026 and 270.1016. Anal. Calcd for C<sub>14</sub>H<sub>19</sub>O<sub>3</sub>Cl: C 62.10, H 7.07, Cl 13.09. Found: C 62.37, H 7.30, Cl 13.23.

# (R)-4-Benzyloxy-3-hydroxy-1-butyne (12: R=H) — (a) To a stirred solution of *n*-butyllithium (15% v/v in hexane, 62.0 ml, 99.2 mmol) in THF (100 ml) containing dimethylpropyleneurea (DMPU) (12.0 ml, 99.2 mmol) was added dropwise the chloride (9: R=H) (3.35 g, 12.4 mmol) in THF (20 ml) at -30 °C and the stirring was continued for 2 weeks at room temperature. The mixture was treated with saturated aqueous NaHCO<sub>3</sub> and extracted with ether. The extract was washed with

brine, dried over MgSO<sub>4</sub>, and evaporated under reduced pressure. The residue was purified on a silica gel column (300 g) using AcOEt-hexane (1:4 v/v) as eluent to give the acetylene (12: R=H) (2.10 g, 96%) as a colorless oil.

(b) To a stirred solution of *n*-butyllithium (1.40 M in hexane, 62.0 ml, 86.8 mmol) in THF (100 ml) containing HMPA (17.2 ml, 98.9 mmol) was added dropwise the chloride (9: R=H) (3.35 g, 12.4 mmol) in THF (20 mml) at -30 °C and the stirring was continued for 1 h at the same temperature. The mixture was treated with saturated aqueous NH<sub>4</sub>Cl and extracted with ether. The extract was washed with brine, dried over MgSO<sub>4</sub>, and evaporated under reduced pressure. The residue was purified on a silica gel column (80 g) using Et<sub>2</sub>O-hexane (1:4 v/v) as eluent to give the acetylene (12: R=H) (2.11 g, 97%) as a colorless oil;  $[\alpha]_D^{29}$  -10.80° (c 1.00, CHCl<sub>3</sub>). Optical purity was determined to be ≥98% ee by measurement of <sup>1</sup>H nmr spectra of *R*- and *S*-MTPA esters. Spectroscopic data (ir, <sup>1</sup>H nmr, ms) were identical with those of an authentic material.<sup>1</sup>

(R)-4-Benzyloxy-3-hydroxy-1-phenyl-1-butyne (14a) — A mixture of the acetylene (12: R=H) (352 mg, 2.0 mmol), (Ph<sub>3</sub>P)<sub>2</sub>PdCl<sub>2</sub> (42.1 mg, 60.0  $\mu$ mol), CuI (7.6 mg, 40.0  $\mu$ mol) and iodobenzene (13a) (816 mg, 4.0 mmol) in triethylamine (10 ml) was sonicated for 2 h at 40 °C. The mixture was diluted with ether and filtered through Celite pad. The filtrate was evaporated and the residue was purified on a silica gel column (25 g) using AcOEt-hexane (1:4 v/v) as eluent to give the phenylacetylene (14a) (453 mg, 90%) as a colorless oil. Spectral data are shown in Table 2.

Compounds  $(14b \sim h)$  were obtained by the same treatments on  $(13b \sim h)$  (see, Tables 1 and 2).

(R)-(E)-4-Benzyloxy-3-hydroxy-1-phenyl-1-butene (15a) — To a stirred solution of the acetylene (14a) (373 mg, 1.48 mmol) in THF (10 ml) was added LiAlH<sub>4</sub> (85.0 mg, 2.22 mmol) and the mixture was refluxed for 1.5 h. After cooling, the mixture was treated with 30% NH<sub>4</sub>OH and was filtered through Celite pad. The filtrate was dried over MgSO<sub>4</sub> and evaporated under reduced pressure. The residue was purified on a silica gel column (15 g) using AcOEt-hexane (3:7 v/v) as eluent to give the allyl alcohol (15a) (306 mg, 81 mmol) as a colorless oil. Spectral data are shown in Table 2. Compounds (15b-h) were obtained by the same treatments on (14b-h) (see, Tables 1 and 2).

4-Benzyloxy-1-trichloroacetylamino-1-phenyl-2-butene (17a) — To a stirred solution of the allyl alcohol (14a) (140 mg, 0.55 mmol) in THF (1.0 ml) was added sequentially KH (35% in oil, 13.0 mg, 0.11 mmol) and CCl<sub>3</sub>CN (66.0 µl, 0.66 mmol) at 0 °C. After 3 h, the mixture was diluted with hexane and the insoluble material was removed by filtration using Celite pad. The filtrate was evaporated under reduced pressure and the residue containing crude imidate (16a) was dissolved in xylene (3.0 ml) and refluxed for 15 h. After cooling the mixture was evaporated under reduced pressure and the residue was taken up into ether. The ethereal layer was washed with water, brine, dried over MgSO<sub>4</sub>, and evaporated The residue was purified on a medium pressure silica gel under reduced pressure. column using AcOEt-hexane (1:4 v/v) as eluent to give the amide (17a) (106 mg, 50%) as a pale yellow oil. Spectral data are shown in Table 2. Compound  $(17c \sim e, g)$  were obtained by the same treatments on  $(15a \sim h)$  (see, Tables 1 and 2).

## **ACKNOWLEDGEMENTS**

We thank to the Ministry of Education, Science, and Culture, Japan for partial financial support to this work and to the Japan Society for the Promotion of Science for Japanese Junior Scientist for a fellowship (to T. S.).

#### REFERENCES

- 1. S. Takano, K. Samizu, T. Sugihara, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1989, 1344.
- Utilities of optically active 4-benzyloxy-4-hydroxy-1-butyne (12: R=H) as a chiral building block, see: (a) S. Takano, T. Sugihara, K. Samizu, M. Akiyama, and K. Ogasawara, Chem. Lett., 1989, 1781. (b) S. Takano, T. Sugihara, and K. Ogasawara, Synlett, 1990, 453. (c) S. Takano, T. Sugihara, and K. Ogasawara,

Synlett, 1991, 279. (d) S. Takano, Y. Sekiguchi, and K. Ogasawara, accompanied paper. (e) S. Takano, K. Inomata, and K. Ogasawara, J. Chem. Soc., Chem. Commun., in press.

- 3. (a) J. S. Yadav, M. C. Chander, and B. V. Joshi, *Tetrahedron Lett.*, 1988, 29, 2737.
  (b) J. S. Yadav, P. K. Deshpande, and G. V. M. Sharma, *Tetrahedron*, 1990, 46, 7033.
  (c) After having prepared this manuscript a synthesis of the compound (12: R=H) has appeared, cf. M. Lopp, T. Kanger, A. Müraus, T. Pehk, and Ü. Lille, *Tetrahedron: Asymmetry*, 1991, 2, 943.
- 4. K. Mikami, K. Azuma, and T. Nakai, Tetrahedron, 1984, 40, 2303.
- (a) L. E. Overman, J. Am. Chem. Soc., 1974, 96, 597. (b) L. A. Clizbe and L. E. Overman, Org. Synth., Col. Vol., 1988, 6, 507.
- 6. S. Takano, M. Akiyama, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1984, 770.
- 7. E. Hungerbuhler and D. Seebach, Helv. Chim. Acta, 1981, 64, 687.
- 8. Cf. S. Takano, T. Sugihara, and K. Ogasawara, Heterocycles, 1990, 31, 1721.
- Cf. (a) S. Yamaguchi, 'Asymmetric Synthesis,' Vol. 1, ed. by J. D. Morrison, Academic Press, New York, 1983, pp. 125-152. (b) S. Takano, M. Takahashi, M. Yanase, Y. Sekiguchi, Y. Iwabuchi, and K. Ogasawara, Chem. Lett., 1988, 1827. (c) T. Kusumi, I. Ohtani, Y. Inouye, and H. Kakisawa, Tetrahedron Lett., 1988, 29, 4731.

Received, 18th November, 1991