PHASE TRANSFER CATALYSED OXIDATIVE ARYLTHIOLATION OF 1,3,6-TRIMETHYLURACIL AND ITS 5-BROMO DERIVATIVE

Subodh Kumar^{*}, Swapandeep S.Chimni, and Deepika Cannoo Department of Chemistry, Guru Nanak Dev University, Amritsar -143 005, India

<u>Abstract</u>- Reaction of 1,3,6-trimethyluracil and its 5-bromo derivative with arylthiols under phase transfer catalytic conditions provides C-H substitution products, 5-arylthio-1,3,6trimethyluracils and 5-arylthio-6-arylthiomethyl-1,3dimethyluracils.

Uracils substituted with a good leaving group at C-5 or C-6 with mononucleophiles undergo a variety of nucleophilic substitution reactions.¹⁻⁶ But in the absence of such a substituent uracil derivatives react with mononucleophiles (viz. alcohol, thiol, amine etc.) in solution phase to form adducts which remain in equilibrium with reactants^{1,7,8} and are not isolable. Now we have found that not only 5-bromo-1,3,6-trimethyluracil (2), but 1,3,6-trimethyluracil (1) also react with arylthiols under phase transfer catalytic conditions to provide mainly 5-arylthio-1,3,6-trimethyluracils (3) and 5-arylthio-6-arylthiomethyl-1,3-dimethyluracils (4).

Treatment of 1,3,6-trimethyluracil (1) with phenylthiol on stirring in dimethylformamide containing anhydrous potassium carbonate and tetrabutylammonium hydrogensulphate gave two compounds with 18% recovery of compound (1). The fast moving component, M^+ m/z 370, in its ¹H nmr⁹ shows absence of signals for C(6)-CH₃ and C(5)-H protons of compound (1), but shows the presence of C(6)-CH₂S and 10 aromatic H signals. Its off

resonance proton decoupled ¹³C nmr spectrum⁹ shows two quartets due to $2xNCH_3$ and one triplet due to $-CH_2S$ in aliphatic region and twelve signals (six singlets due to 2xC=0, C=C and 2 ArC and six doublets due ot ArCH) in low-field region. These data corroborate the structure 1,3-dimethyl-5phenylthio-6-phenylthiomethyluracil $(4, Ar=C_{6}H_{5})$. The slow moving component, M^+ m/z 262, in its ¹H nmr shows¹⁰ three 3H singlets (2xNCH₃ and CH_3-6) along with 5 ArH singlet, but absence of C-5 H. Its off resonance proton decoupled 13 C nmr¹⁰ shows three quartets (2x NCH₃, CH₃-6) in aliphatic region and five singlets (2xC=0, C=C and ArC) and three doublets(3 ArCH) in low-field region. These data assign the structure 5-phenylthio-1,3,6-trimethyluracil (3, Ar=C₆H₅) to this slow moving component. When the reaction was carried out in the absence of PTC, such C-H substitution reaction did not occur.

The reaction of 5-bromo-1,3,6-trimethyluracil (2) with phenylthiol under PTC conditions provided compounds (3) ($Ar=C_6H_5$) (38%) and (4) ($Ar=C_6H_5$) (30%). In this case traces of 1,3-dimethyl-6-phenylthiomethyluracil (5) were also isolated, whose structure was assigned from its ¹H nmr¹¹ only. Similar, treatment of 1 and 2 with 4-chlorophenylthiol, 2-aminophenylthiol HETEROCYCLES, Vol. 34, No. 3, 1992

ArSH Ar=	3			4			5		
	yield [*]	M ⁺ m/z	mp °C	yield [*] %	M ⁺ m/z	mp °C	yield [*]	M ⁺ m/z	mp °C
	¥								
с ₆ н ₅ -	37(38)	262	98-99	4(30)	370	35	-(1)		_
4-C1C ₆ H ₄ -	35(38)	296/	111-112	3(12)	426/	oil	4(-)	296/	123
		298			428/			298	
	(1:1)			430			(1:1)		
2-NH 2 ^{C 6H 4~}	30(28)	277	148-150	4(20)	388	205-	-(3)	277	oil
						210			
2-C5H4N-	10(44)	263	133-137	2(12)	373	oil	-(4)	263	oil

Table: Reactions of 1,3,6-Trimethyluracils (1) and (2) with Arylthiols.

^{*}The yields given in paranthesis corespond to compound (2).

and pyridine-2-thiol gave the corresponding compounds (3) and (4) in modérate yields (see Table).

However, 1 did not react with alkylthiolate ions (benzyl-,propyl-) and 2 with alkylthiolate ions gave respective monoalkylthic derivatives (3) and 6-alkylthiomethyl-1,3-dimethyluracil (5), but corresponding bis(alkylthic) uracils (4) could not be isolated. 1,3-Dimethyluracil did not react with alkyl/arylthiclate ions.

Therefore compound (1) with arylthiolate ions undergoes C-5 H and CH_3-6 substitutions and compound (2) undergoes C-Br and CH_3-6 substitutions to give compounds (3) and (4)^{*}. In literature substitutions of leaving groups present at C-5/C-6 of uracils by nucleophiles are well documented, ¹⁻⁶ but such C-H substitutions at sp^2 C-5 and sp^3 -CH₃-6 are the first examples.

The observations that 1 with phenylthiolate ion in the presence of m-dinitrobenzene gave 3, but in the presence of N, N, N', N'-tetramethylp-phenylenediamine decomposed, points towards an electron transfer mechanism, which warrants further investigations.

ACKNOWLEDGEMENTS

We thank CSIR (India) and INSA for financial assistnace ; UGC for COSIST and SAP programmes and CDRI, Lucknow, and TIET, Patiala for mass and elemental studies.

REFERENCES AND NOTES

- E. G. Sander, "Bioorganic Chemistry" ed. by E. E. Van Tamelen, Academic Press, 1977, 2, 273-297 and references therein.
- 2. T. K. Bradshaw and D. W. Hutchinson, Chem. Soc. Rev., 1977, 6, 43.
- 3. S. Kumar and S. S. Chimni, Heterocycles, 1988, 27, 2523.
- 4. S. Kumar and S. S. Chimni, Ind. J. Chem., 1989, 28B, 1079.
- 5. K. Hirota, Y. Yamada, Y. Kitade and S. Senda, J. Chem. Soc. Perkin Trans.1, 1981, 2943.
- 6. B. C. Pal, J. Am. Chem. Soc., 1978, 100, 5170.
- I. H. Pitman, M. J. Cho, and G. S. Rork, J. Am. Chem. Soc., 1974.
 96, 1840.
- R. Shapiro, R. E. Servis, and M. Welcher, J. Am. Chem. Soc., 1970, 92, 422.
- 9. Spectral data: $M^+ m/z$ 370; ¹H nmr (CDCl₃): § 3.34(s, 3H, NCH₃), 3.62(s, 3H, NCH₃), 4.42(s, 2H, CH₂), 7.10(s, 5H, ArH), 7.23-7.55(m, 5H, ArH); ¹³C nmr(CDCl₃): 6 28.95(q, N-3CH₃), 33.10(q, N-1CH₃), 35.75 (t, CH₂), 105.67(s, C-5), 127.07(d, ArCH), 128.38 (d, ArCH), 128.78(d, ArCH), 129.28(d, ArCH), 132.55(d, ArCH), 132.42(s, ArC), 135.87 (s, ArC), 151.46(s, C₂=0), 155.82(s, C-6), 160.67(s, C₄=0).
- 10. Spectral data: $M^+ m/z \ 262$; ¹H nmr (CDCl₃): $\& 2.63(s, 3H, 6-CH_3)$, 3.36(s, 3H, NCH₃), 3.50(s, 3H, NCH₃), 7.15(s, 5H, ArH); ¹³C nmr(CDCl₃): $\& 19.26(q, 6-CH_3)$, 28.99(q, N-3CH₃), 33.38(q, N-1CH₃), 104.03(s, C-5), 128.32(s, ArCH), 128.78(s, ArCH), 129.28(d, ArCH), 136.13(s, ArC), 151.49(s, C=0), 158.18(s, C-6), 161.13(s, C₄=0).
- ¹H Nmr(CDCl₃): 6 3.28(s, 3H, NCH₃), 3.50(s, 3H, NCH₃), 3.77
 (s, 3H, C₆-CH₂), 5.34(s, 1H, C₅-H), 7.33(s, 5H, ArH).

Received, 2nd September, 1991

428