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Abstract - (R)<+)-Noranicanine (la), a new Iype of benzylisoquinoline p r ecmr  was isolated from Aniba conelilla 

(Iauraceae) and its suucolre was determined by means of specoosMpic data as well as by synthesis. 

1-Benzylisoquinolines and their derivatives represent one of the preeminent group of alkaloids in plants.' The 

benzylisoquinoline skeleton is known to be produced, in vivo, via cyclization of Schiff bases formed from 

condensation of dopamine with either 4-hydroxyphenylacetaldehyde or 3.4-dihydroxy~henylacetaldehyde.2 

Natural known 1-benzyltetrahydroisoquinolines with a monosubstituted benzyl group therefore always exhibit 

apara  functionality in ring C. We now have isolated from a Bolivian Lauraceae, Aniba conelilla ,3 (+)- 

noranicanine (I), a hioxygenated benzyltetrahydroisoquinoline with a different substitution pattern in ring C, 

the oxygenated substituent being in the meta position. The savcture of this new alkaloid has been f i l y  

established by synthesis. 

The El mass specmm of 1 , C18H21N03, exhibited a typical benzyltetrahydroisoquinoline type fragmentation 

with a very weak molecular ion at m/z 299 and a base peak at m/z 192 representing the isoquinoline 

moiety. The nmr specmm of (+)-noranicanine (CDC13, 200 MHz, TMS=O) has been summarized around 

structure la.  Noteworthy were the absence of a N-methyl singlet and the presence of two methoxy singlets at 6 

3.79 and 3.85 ppm and two aromatic singlets at 6 6.57 and 6.50 ppm for the isoquinoline moiety. Unlike 

coclaurine or other compounds monosubstitoted in ring C, H-13 was there in evidence as a deshielded doublet 

of doublets at 6 7.09 ppm (512.,3=513,1~=7.5 H z ) .  However, the unresolved multiplet centered at 6 6.67 ppm 

corresponding to the three remaining aromatic protons did not allow us to unambiguously establish the 

substitution pattern of the benzene ring. 



18 HETEROCYCLES. Val. 34. No. 1 .  1992 

- 
Dam with are interchangeable j, 75 7,mdd 75 

Different assays of solvent effects failed in offering a better resolution than CDC13, however the hydroxyl 

substituent of ring C should be undoubtedly located either in the meta (la) or in the ortho position (lb).  We 

thus undertook the synthesis of both possible compounds via a classical route 5,6 in order to confirm the 

assigned smcNre 1 (Scheme 1). 

Scheme 1 
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Condensation of 3.4-dimethoxyphenethylamine with rn-hydroxyphenylacetic acid or o-hydroxyphenylacetic 

acid respectively led to amides (2a) (89%,mp 149-150 'C) and 2b (97%, mp 108-109'C) which were 

benzylated to give 3a (72%. mp 89-90 "C) and 3b (85%, mp 112-113'C). A Bischler-Napieralski cyclization 

with 3a and 3b then provided 3,4-dihyhisoquinolines (4a) (71%. mp 79-80 OC) and (4b) (73%, mp 184- 

18S°C) which were further reduced with sodium borohydride into 5a (86%. mp 160-161°C) and 5b (82%. mp 

165-166°C), respectively..Debenzylation of 5a and 5b gave the corresponding phenol (la) (61%, mp 155-156 

"C) and (lb) (76%, mp 147-148 "C) as their hydmhlorides.7 Compound (la), in its base form, finally was 

specuoscopically identical with natural (+)-no~anicanine.~ 

The I-R configuration of the natural (+)-noranicanine is suggested by the positive optical rotation and 

confmed by the cd curve which presents a negative Cotton effect at 284 nm and a negative tail at 240 nm .lo 

To our knowledge, this is the fust repon of anatural benzylteuahydroisoquinoline monosubstituted in ring C 

with the hydroxyl group being in the rneta position. Due to the number of alkaloids derived from this basic 

skeleton, (+)-noranicanine may be therefore regarded as a new type of benzylisoquinoline precursor. 
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