SYNTHESIS AND REARRANGEMENT OF AMINOALKYL LACTONES TO SPIRO-CYCLIC HYDROXYMETHYL LACTAMS

Claudia Dostal, Silvia Lauritz, and Ernst Urban*

Institut für Pharmazeutische Chemie, Universität Wien, Währinger Straße 10, A-1090 Wien, Österreich

<u>Abstract</u> - Lithiation of lactones (<u>1</u>) and (<u>2</u>) followed by electrophilic substitution with dibromoalkanes afforded bromoalkyl lactones (<u>3a</u> - <u>3c</u>) and (<u>4a</u> - <u>4c</u>). Treatment of <u>3a</u>, <u>3b</u>, <u>4a</u> and <u>4b</u> with primary amines led to formation of aminoalkyl lactones (<u>5a</u>, <u>5b</u>, <u>6a</u>, <u>6b</u> and <u>11</u>), which were rearranged to spirocyclic hydroxyalkyl lactams (<u>7a</u>, <u>7b</u>, <u>8a</u>, <u>8b</u> and <u>12</u>). Spirocyclic lactams (<u>7a</u>, <u>7b</u>, <u>8a</u> and <u>8b</u>) were reduced to spirocyclic amines (<u>9a</u>, <u>9b</u>, <u>10a</u> and <u>10b</u>), whereas reduction of lactam (<u>12</u>) gave a separable mixture of amine (<u>13</u>) and tricyclic aminal (<u>15</u>).

INTRODUCTION

GABA (= γ -aminobutyric acid) is an important inhibitory neurotransmitter in central nervous system ^{1,2} and findings that GABA is involved in the developement of certain neurological and psychiatric diseases increase interest in GABA analogs. ³ GABA can exist in a wide variety of conformations due to comparative freedom of rotation about the single bonds. ¹ Information ¹ on the active site conformation of GABA has been obtained by studying the activities of molecules in which conformational mobility is reduced. Restrained GABA analogs have been constructed by incorporation of bulky substituents, unsaturation, carbocyclic rings, heterocyclic rings or combination of these. ¹⁻³ Our aim was the sythesis of aminoalkylisobenzofuranones, which represent analogs of GABA containing the carboxylic function as part of a heterocyclic ring system. Homologous amino alkyl lactones should be prepared to study the influence of the distance between basic nitrogen and lactone carboxyl group to assumed activity of such compounds. Scheme 1:

RESULTS AND DISCUSSION

Readily available lactones (1) ⁴ and (2) ⁵ were used as starting compounds, which should be reacted to bromoalkyl lactones by metallation and electrophilic substitution at C-7a. Desired aminoalkyl lactones should be accessable by substitution reaction of bromoalkyl lactones with primary amines.

Thus lactones (<u>1</u>) and (<u>2</u>) were lithiated at standard conditions (1.1 equivalent LDA, -78° C, 1 h) ⁶·⁷ and treated with an excess of dibromoalkanes. Reaction of lithiated lactone (<u>1</u>) (or <u>2</u>) with 1,3-dibromopropane afforded a mixture of single substitution product (<u>3a</u>) (or <u>4a</u>) and double substitution product (<u>16</u>) (or <u>17</u>) in a ratio of 2:1. 3-Bromopropyl lactones (<u>3a</u>) (61%) and (<u>4a</u>) (68%) were separated by distillation in vacuo, whereas dimeric lactones (<u>16</u>) (29%) and (<u>17</u>) (29%) were isolated by crystallization from the distillation residue. Using 1,2-dibromoethane as electrophile led to an equimolar mixture of starting material (<u>1</u>) (or <u>2</u>) and single substitution of HBr, which causes high ratio of starting lactones (<u>1</u>) and (<u>2</u>), whereas double substitution products are not formed, because distance between bulky isobenzofuranone skeleton and brominated carbon is distinctly shorter in 2-bromoethyl lactones (<u>3b</u>) and (<u>4b</u>) than in 3-bromopropyl lactones (<u>3a</u>) and (<u>4a</u>).

Removal of starting lactone by vacuum distillation and crystallization of the residue yielded pure (3b) (28%) and (4b) (47%). Treatment of lithiated <u>1</u> and <u>2</u> with dibromomethane resulted in formation of bromomethyl lactones (3c) (98%) and (4c) (71%) respectively as single products, which were purified by crystallization. Another access to saturated bromoalkyl lactones (<u>3a</u> - <u>3c</u>) was found to be the catalytic hydrogenation (10% Pd/C, 1 bar) of the double bond in <u>4a</u> - <u>4c</u>, which proceeded in high yields (95 -99%) without hydrogenolytic cleavage of HBr.

Structure of bromoalkyl lactones (3a - 3c) and (4a - 4c) was confirmed by ¹H- and ¹³C-nmr spectroscopic studies (see Tables 1 and 2). Characteristic molecular mass peaks were detected in mass spectra of dimerisation products (<u>16</u>) and (<u>17</u>). Comparison of ¹H-¹H coupling constants which were measured in spectra of <u>3a</u> - <u>3c</u> and <u>4a</u> - <u>4c</u> indicated that substitution at C-7a proceeded under retention of configuration. This fact was in accordance with results obtained by electrophilic substitution of analogous bicyclic lactones containing an asymmetric center in both α - and β -positions of lactone carboxyl group. ⁶⁻⁸ Chirality at the α -carbon was lost during enolate formation but reproduced by a diastereoselective substitution reaction, mediated by chiral β -carbon.

Table 1: ¹H-¹H Coupling constants (in Hz) and deduced preferred conformations of bromoalkyl lactones (3a - 3c) and (4a - 4c) in CDCl₃.

3 a - c

1 H-1 H	<u>3a</u>	<u>3b</u>	<u>3c</u>	<u>4a</u>	<u>4b</u>	<u>4c</u>
3/1-3a	6.0	6.0	7.4	8.0	9.0	8.0
3/2-3a	6.0	6.0	7.4	9.0	9.0	8.0
3a-4/1	6.0	6.0	7.4	2.0	0	2.0
3a-4/2	6.0	6.0	7.4	8.0	9.0	9.0
x=	3	2	1	3	2	1

Table 2: ¹³C-Shifts (CDCl₃, 8 in ppm) of starting compounds (<u>1</u>) and (<u>2</u>) in comparison with bromoalkyl lactones (<u>3a</u> - <u>3c</u>) and (<u>4a</u> - <u>4c</u>).

	1	<u>3a</u>	<u>3b</u>	<u>3c</u>	2	<u>4a</u>	<u>4b</u>	<u>4c</u>
C-1	178.09	179.99	179.31	177.65	178.49	180.58	180.00	178.33
C-3	71.38	69.14	68.98	68.55	72.24	69.96	69.87	70.31
C-3a	35.03	38.66	38.51	36.35	31.31	36.40	36.36	35.48
C-4	23.07	25.11	24.62	23.21	21.45	22.95	22.58	22.72
C-5	22.19	21.60	21.35	20.98	124.47	124.35	123.90	123.90
C-6	22.57	21.88	21.59	21.11	127.06	124.48	124.54	125.27
C-7	26.83	29.16	28.75	28.77	24.14	28.82	28.14	28.67
C-7a	39.08	44.41	45.39	46.26	36.63	43.04	43.67	45.74
C-8		27.12	27.02	35.02		27.31	26.97	35.86
C-9		33.05	37.58			33.24	38.45	
C-10		33.52				34.02		

Reaction of bromoalkyl lactones $(\underline{3a})$, $(\underline{3b})$, $(\underline{4a})$ and $(\underline{4b})$ with excess benzylamine led to formation of aminoalkyl lactones $(\underline{5a})$, $(\underline{5b})$, $(\underline{6a})$ and $(\underline{6b})$, which were rearranged at the substitution conditions (toluene/reflux/16 h) to spirocyclic hydroxymethyl lactams $(\underline{7a})$, $(\underline{7b})$, $(\underline{8a})$ and $(\underline{8b})$. Reaction of $\underline{4b}$ with aniline resulted in substitution and rearrangement to spiro lactam $(\underline{12})$. In contrast to those results steric hindered bromomethyl lactones $(\underline{3c})$ and $(\underline{4c})$ remained completely unreacted, even if refluxing in excess benzylamine without a solvent. Reacting spiro lactam $(\underline{8b})$ and an equimolar amount of p-toluenesulfonic acid in refluxing toluene (24 h) gave aminoalkyl lactone $(\underline{6b})$ after basic workup. But $\underline{6b}$ was not stable enough to be characterized, because rearrangement to $\underline{8b}$ was complete at room temperature within 1 - 2 d or in refluxing toluene within 2 h so that further investigations in preparation of aminoalkyl lactones were omitted.

Structure of spirocyclic lactams was ensured by spectroscopic methods. Signals of carbinol-, <u>N</u>-benzyl- and <u>N</u>-methylene-protons (H-3) in ¹H-nmr spectra of <u>7a</u>, <u>7b</u>, <u>8a</u> and <u>8b</u> were detected well separated at 400 MHz. Ir absorption bands of 8-lactams (<u>7a</u>) and (<u>8a</u>) (1620 or 1625 cm⁻¹) and γ -lactams (<u>7b</u>) and (<u>8b</u>) (1665 or 1670 cm⁻¹) at low wave numbers indicated the presence of an intramolecular hydrogen bridge bond between lactam carbonyl and hydroxymethyl group.

Reduction of spirocyclic lactams (7a), (7b), (8a) and (8b) led to spirocyclic amines (<u>9a</u>), (<u>9b</u>), (<u>10a</u>) and (<u>10b</u>) respectively using solutions of LiAlH₄ in THF, whereas reaction of 12 gave a mixture of expected amine (13) and tricyclic aminal (15) in a ratio of 1:5, which could be separated by column chromatography. Arylamine (13) was rapidly oxidised to 15, if solutions were in contact with air. Treatment of <u>8b</u> with a suspension of LiAlH4 resulted in formation of an equimolar mixture of spirocyclic amine (10b) and tricyclic aminal (14), which was separated by column chromatography. Benzylamine (10b) proofed to be inert in presence of air. Comparing ¹H-nmr spectral data of spiro amines to corresponding spiro lactams showed typical shifts of N-benzyl- and N-methylene protons (H-3) to high field, due to lost of inductive and anisotropic effect of lactam carbonyl group. Large shift increments (≈1.4 ppm) were observed between geminal protons at C-1 in <u>9a</u>, <u>9b</u>, <u>10a</u> and <u>10b</u>. ¹H-Nmr spectra of tricyclic aminals (14) and (15) showed well separated signals of <u>N</u>- and <u>O</u>-methylene protons (H-2 and H-5) and a typical singlet of aminal proton (H-3a).

139

Relative configuration of chiral centers C-3a, C-5a and C-9a in <u>14</u> and <u>15</u> was considered to be coupled, due to rigidity of tricyclic aminals. Because reaction sequence from bromoalkyl lactams to tricyclic aminals (<u>14</u>) and (<u>15</u>) should proceed without racemisation of present chiral centers, postulated relative configuration at asymmetric carbons of spirolactams, spirocyclic amines and bromoalkyl lactones was regarded to be ensured.

ACKNOWLEDGEMENTS

We thank W.Robien, H.Kalchhauser and H.Kählig (Institut für Organische Chemie) for detection of 400 MHz ¹H-nmr spectra (apparatus supplied by "Fonds zur Förderung der wissenschaftlichen Forschung", project P6537C) and want to express our thanks to "Bundesministerium für Wissenschaft und Forschung" for financial support.

EXPERIMENTAL

All melting points were determined on a KOFLER melting point apparatus and are uncorrected. ¹H-Nmr and ¹³C-nmr spectra were recorded on a BRUKER AC 80 or AM-400 WB, using tetramethylsilane as internal standard. Infrared spectra were recorded on a PERKIN ELMER 298 spectrophotometer. Mass spectra were detected on a MAT CH-7 by A. Nikiforov (Institut für Organische Chemie). Microanalyses were determined by J. Theiner (Institut für Physikalische Chemie).

General procedure A:

A solution of diisopropylamine (30.8 ml, 220 mmol) in dry THF (42.2 ml) was cooled to 0°C followed by addition of n-BuLi (147 ml, 1.5 M in hexane, 220 mmol). This solution was added at -78°C to a solution of freshly distilled starting lactone (200 mmol) dissolved in dry THF (200 ml) and the mixture was stirred at -78°C for 1 h. After addition of appropriate dibromoalkane (1 mol), the cooling bath was removed, the reaction mixture was allowed to warm up to room temperature and stirring was continued for 16 h. The solvent was distilled off at reduced pressure, the residue was dissolved in 2N HCl (100 ml) and extracted with toluene (4x100 ml). The combined organic layers were dried (Na₂SO₄) and the solvent was removed in vacuo to yield the raw product, which was purified by vacuum distillation or recrystallization.

140

General procedure B:

The unsaturated starting lactone (0.1 mol) was dissolved in ethyl acetate (150 ml), the hydrogenation catalyst (10% Pd on charcoal, 1 g) was added and the mixture was stirred in a hydrogen atmosphere (1 bar) until no more hydrogen was absorbed. After removal of the catalyst by filtration and of the solvent by evaporation the residue was purified by distillation or recrystallization.

<u>General procedure C</u>:

The corresponding bromoalkyl lactone (20 mmol) was dissolved in toluene (100 ml), the appropriate amine (100 mmol) was added and the mixture was refluxed for 16 h. The organic layer was washed with 2N HCl (3x100 ml), dried (Na₂SO₄) and the solvent was evaporated at reduced pressure. The residue was purified by recrystallization.

<u>General procedure D</u>:

To the corresponding spiro lactam (20 mmol) dissolved in dry THF (150 ml) was added LiAlH4 (1M in THF, 50 ml) at 0°C. The mixture was refluxed for 2 h, cooled to 0°C and hydrolysed by addition of H2O (9 ml). After stirring for 2 h the slurry was filtered off and washed with ethyl acetate (50 ml). Evaporation of the solvent yielded spirocyclic amine (free base). An analytical sample (2 mmol) dissolved in ether (15 ml) was treated with HCl (1M in ether, 2 ml), the solvent was removed at reduced pressure and the residue was recrystallized to yield pure hydrochloride.

(<u>3aRS, 7aRS</u>)-<u>7a-(3-Bromopropy1)perhydroisobenzofuranone</u> (<u>3a</u>)

Starting material <u>1</u> (28 g, 200 mmol), electrophile 1,3-dibromopropane (102 ml, 1 mol), method A. Distillation gave <u>3a</u> (31.8 g, 61%, colourless oil), bp 138-140°C/ 0.03 mm Hg. Starting material <u>4a</u> (25.9 g, 100 mmol), method B. Distillation afforded <u>3a</u> (24.8 g, 95%, colourless oil), bp 139-140°C/0.03 mm Hg. ¹H-Nmr: (CDCl₃) (δ , ppm) 4.32 (dd, J = 9.0 and 6.0 Hz, 1H, H-3/1), 3.99 (dd, J = 9.0 and 6.0 Hz, 1H, H-3/2), 3.42 (dt, J = 6.0 and 10.0 Hz, 1H, H-10/1), 3.40 (dt, J = 6.0 and 10.0 Hz, 1H, H-10/2), 2.30 (qui, J = 6.0 Hz, 1H, H-3a), 2.01 - 1.31 (m, 12H, aliphatic-H). Anal. Calcd for C₁₁H₁₅O₂Br: C, 50.58; H, 6.57; Br, 30.59. Found C, 50.36; H, 6.42; Br, 30.81.

(<u>3aRS,7aRS</u>)-<u>7a-(2-Bromoethyl)perhydroisobenzofuranone</u> (<u>3b</u>)

Starting material <u>1</u> (28g, 200 mmol), electrophile 1,2-dibromoethane (86 ml, 1 mol), method A. <u>1</u> was removed by distillation (bp 78-80°C/ 0.2 mm Hg). The residue was recrystallized from methanol to afford <u>3b</u> (13.8 g, 28%, colourless crystals), mp 48°C. Starting material <u>4b</u> (24.5 g, 100 mmol), method B. Recrystallization from methanol yielded <u>3b</u> (24.5 g, 99%, colourless crystals), mp 48°C. ¹H-Nmr: (CDCl₃) (8, ppm) 4.33 (dd, J = 9.0 and 6.0 Hz, 1H, H-3/1), 4.03 (dd, J = 9.0 and 6.0 Hz, 1H, H-3/2), 3.45 (dt, J = 7.0 and 9.0 Hz, 1H, H-9/1), 3.42 (dt, J = 7.0 and 9.0 Hz, 1H, H-9/2), 2.37 (qui, J = 6.0 Hz, 1H, H-3a), 2.27 (ddd, J = 14.0, 9.0 and 7.0 Hz, 1H, H-8/1), 2.19 (ddd, J = 14.0, 9.0 and 7.0 Hz, 1H, H-8/2), 1.90 -1.70 (m, 2H, aliphatic -H), 1.55 - 1.35 (m, 6H, aliphatic-H). Ir (KBr) 1760 cm⁻¹ (τ -lactone). Ms: m/z 248 (M⁺,⁸¹Br), 246 (M⁺,⁷⁹Br), 139 (M⁺-CH₂-CH₂-Br). <u>Anal.</u> Calcd for C10H1502Br: C, 48.59; H, 6.13; Br, 32.33. Found C, 48.32; H, 6.14; Br, 32.68.

(<u>3aRS,7aRS</u>)-<u>7a-Bromomethylperhydroisobenzofuranone</u> (<u>3c</u>)

Starting material <u>1</u> (28 g, 200 mmol), electrophile dibromomethane (70 ml, 1 mol), method A. Recrystallization from ethyl acetate afforded <u>3c</u> (45.7 g, 98%, colourless crystals), mp 51-53°C. Starting material <u>4c</u> (23.1 g, 100 mmol), method B. Recrystallization from ethyl acetate gave <u>3c</u> (23.1 g, 99%, colourless crystals), mp 52°C. ¹H-Nmr: (CDCl₃) (δ , ppm) 4.31 (dd, J = 8.9 and 7.4 Hz, 1H, H-3/1), 4.02 (dd, J = 8.9 and 7.4 Hz, 1H, H-3/2), 3.67 (d, J = 10.7 Hz, 1H, H-8/1), 3.46 (d, J = 10.7 Hz, 1H, H-8/2), 2.85 (qui, J = 7.4 Hz, 1H, H-3a), 1.76 - 1.46 (m, 8H, aliphatic-H). Ir: (KBr) 1775 cm⁻¹ (γ -lactone). Ms: m/z 234 (M⁺, ⁸¹Br), 232 (M⁺, ⁷⁹Br), 153 (M⁺-Br), 109 (M⁺-Br-CO₂). <u>Anal.</u> Calcd for C9H13O2Br: C, 46.37; H, 5.63; Br, 34.27. Found: C, 46.63; H, 5.92; Br, 34.09.

(<u>3aRS.7aSR</u>)-<u>7a-(3-Bromopropy1)-3a,4.7.7a-tetrahydroisobenzofuranone</u> (<u>4a</u>) Starting material <u>2</u> (27.6 g, 200 mmol), electrophile 1,3-dibromopropane (102 ml, 1 mol), method A. Distillation afforded <u>4a</u> (35.2 g, 68%, colourless oil), bp 135-136°C/0.02 mm Hg. ¹H-Nmr: (CDCl₃) (8, ppm) 5.80 (m, 2H, H-5, H-6), 4.33 (dd, J = 9.0 and 8.0 Hz, 1H, H-3/1), 3.92 (t, J = 9.0 Hz, 1H, H-3/2), 3.41 (m, 2H, H-10), 2.61 (ddt, J = 9.0, 2.0 and 8.0 Hz, 1H, H-3a), 2.40 - 2.20 (m, 2H, aliphatic-H), 2.09 - 1.64 (m, 6H, aliphatic-H). <u>Anal.</u> Calcd for C11H1502Br: C, 50.98; H, 5.85; Br, 30.83. Found: C, 51.12; H, 5.94; Br, 30.62. (3aRS.7aRS) - 7a - (2 - Bromoethyl) - 3a, 4.7.7a - tetrahydroisobenzofuranone (4b)Starting material <u>2</u> (27.6 g, 200 mmol), electrophile 1,2-dibromoethane(86 ml, 1 mol), method A. <u>2</u> was removed by distillation (bp 80-83°C/0.3 mmHg). The residue was recrystallized from methanol to afford <u>4b</u> (23 g, 47%,colourless crystals), mp 56-57°C. ¹H-Nmr: (CDCl₃) (8, ppm) 5.78 (m, 2H,H-5, H-6), 4.35 (t, J = 9.0 Hz, 1H, H-3/1), 3.93 (t, J = 9.0 Hz, 1H,H-3/2), 3.48 (dt, J = 6.6 and 10.0 Hz, 1H, H-9/1), 3.40 (dt, J = 6.6 and10.0 Hz, 1H, H-9/2), 2.69 (qua, J = 9.0 Hz, 1H, H-3a), 2.52 - 1.89 (m, 6H, $aliphatic-H). Ir: (KBr) 1775 cm⁻¹ (<math>\gamma$ -lactone). Ms: m/z 246 (M⁺,⁸¹Br), 244 (M⁺,⁷⁹Br), 137 (M⁺-CH₂-CH₂-Br). <u>Anal.</u> Calcd for C10H13O2Br: C, 49.00; H, 5.35; Br, 32.60. Found: C, 49.21; H, 5.35; Br, 32.91.

(3aRS.7aRS) - 7a - (Bromomethyl) - 3a, 4.7.7a - tetrahydroisobenzofuranone (4c)Starting material 2 (27.6 g, 200 mmol), electrophile dibromomethane(70 ml), method A. Recrystallization from methanol afforded 4c (32.8 g,71%, colourless crystals), mp 47°C. ¹H-Nmr: (CDCl₃) (8, ppm) 5.80 (m, 2H,H-5, H-6), 4.40 (dd, J = 9.0 and 8.0 Hz, 1H, H-3/1), 3.92 (dd, J = 9.0 and8.0 Hz, 1H, H-3/2), 3.74 (d, J = 10.0 Hz, 1H, H-8/1), 3.45 (d, J = 10.0Hz, 1H, H-8/2), 3.11 (ddt, J = 9.0, 2.0 and 8.0 Hz, 1H, H-3a), 2.50 - 2.24(m, 2H, aliphatic-H), 2.17 - 1.98 (m, 2H, aliphatic-H). Ir: (KBr) 1775 $cm⁻¹ (<math>\gamma$ -lactone). Ms: m/z 232 (M⁺, ⁸¹Br), 230 (M⁺, ⁷⁹Br), 151 (M⁺-Br), 137 (M⁺-CH₂-Br). Anal. Calcd for C9H1102Br: C, 46.77; H, 4.81; Br, 34.57. Found: C, 47.07; H, 4.84; Br, 34.58.

(<u>6RS,11RS</u>)-<u>2-Benzyl-11-hydroxymethyl-2-azaspiro[5.5]undecanone</u> (<u>7a</u>) Starting material <u>3a</u> (5.22 g, 20 mmol) + benzylamine (10.7 g, 100 mmol), method C. Recrystallization from methanol afforded <u>7a</u> (5.46 g, 95%, colourless crystals), mp 20°C. ¹H-Nmr: (CDCl₃) (&, ppm) 7.37 - 7.14 (m, 5H, aromatic-H), 4.61 (d, J = 14.0 Hz, 1H, H-1'/1), 4.53 (d, J = 14.0 Hz, 1H, H-1'/2), 3.96 (dd, J = 12.0 and 6.0 Hz, 1H, H-12/1), 3.70 (dd, J = 12.0 and 4.0 Hz, 1H, H-12/2), 3.24 (dt, J = 12.0 and 6.0 Hz, 1H, H-3/1), 3.18 (dt, J = 12.0 and 6.0 Hz, 1H, H-3/2), 2.92 (m, 1H, OH), 2.34 (ddd, J = 13.0, 9.0 and 4.0 Hz, 1H, H-5/1), 2.22 (ddd, J = 13.0, 9.0 and 4.0 Hz, 1H, H-5/2), 2.00 - 1.57 (m, 7H, aliphatic-H), 1.57 - 1.43 (m, 2H, aliphatic-H), 1.37 (m, 1H, aliphatic-H), 1.26 (m, 1H, aliphatic-H). Ir: (KBr) 1625 cm⁻¹ (&-lactam). Ms: m/z 287 (M⁺), 257 (M⁺-30), 228 (M⁺-59), 91 (PhCH2^{*}, base peak). <u>Anal.</u> Calcd for C18H25NO2: C, 75.21; H, 8.79; N, 4.87. Found C, 75.31; H, 8.58; N, 4.81. (5RS, 10RS) - 2 - Benzyl - 10 - hydroxymethyl - 2 - azaspiro[4.5]decanone (7b)Starting material <u>3b</u> (4.94 g, 20 mmol) + benzylamine (10.7 g, 100 mmol),method C. Recrystallization from ether/pet. ether afforded <u>7b</u> (5.30 g,97%, colourless crystals), mp 20°C. ¹H-Nmr: (CDCl₃) (8, ppm) 7.35 - 7.20(m, 5H, aromatic-H), 4.45 (s, 2H, H-1'), 4.20 (dd, J = 11.0 and 8.0 Hz,1H, H-11/1), 3.69 (m, 1H, OH), 3.54 (d, J = 11.0 Hz, 1H, H-11/2), 3.22(ddd, J = 10.0, 8.0 and 6.0 Hz, 1H, H-3/1), 3.16 (ddd, J = 10.0, 8.0 and6.0 Hz, 1H, H-3/2), 2.04 (ddd, J = 14.0, 8.0 and 6.0 Hz, 1H, H-4/1), 2.01(m, 1H, aliphatic-H), 1.98 (ddd, J = 14.0, 8.0 and 6.0 Hz, 1H, H-4/2),1.90 - 1.52 (m, 5H, aliphatic-H), 1.52 - 1.23 (m, 3H, aliphatic-H). Ir: $(KBr) 1670 cm⁻¹ (<math>\gamma$ -lactam). Ms: m/z 273 (M⁺), 243 (M⁺-30), 214 (M⁺-59), 91 (PhCH₂⁺, base peak). <u>Anal.</u> Calcd for C₁₇H₂₃NO₂: C, 74.68; H, 8.50; N, 5.12. Found C, 74.32; H, 8.92; N, 4.96.

(6RS,11SR)-2-Benzyl-11-hydroxymethyl-2-azaspiro[5.5]undec-8-en-one (8a)Starting material 4a (5.18 g, 20 mmol) benzylamine (10.7 g, 100 mmol), method C. Recrystallization from methanol afforded 8a (3.03 g, 53%, colourless crystals), mp 91-92°C. ¹H-Nmr: (CDCl₃) (8, ppm) 7.40 - 7.10 (m, 5H, aromatic-H), 5.62 (m, 1H, H-8), 5.58 (m, 1H, H-9), 4.76 (d, J = 14.0 Hz, 1H , H-1'/1), 4.46 (d, J = 14.0 Hz, 1H, H-1'/2), 4.09 (ddd, J = 12.0, 8.0 and 4.0 Hz, 1H, H-12/1), 3.68 (dd, J = 10.0 and 4.0 Hz, 1H, OH), 3.44 (ddd, J = 12.0, 10.0 and 4.0 Hz, 1H, H-12/2), 3.30 (dt, J = 12.0 and 6.0 Hz, 1H, H-3/1), 3.22 (dt, J = 12.0 and 6.0 Hz, 1H, H-3/2), 3.08 (m, 1H, H-7/1), 2.30 (m, 1H, H-10/1), 2.10- 1.60(m, 7H, aliphatic-H). Ir: (KBr) 1620 cm⁻¹ (8-lactam). Ms: m/z 285 (M⁺), 255 (M⁺-30), 226 (M⁺-59), 91 (PhCH₂⁺). <u>Anal.</u> Calcd for C1sH23NO2: C, 75.74; H, 8.14; N, 4.91. Found C, 75.45; H, 8.51; N, 4.91.

(5RS.10RS)-2-Benzyl-10-hydroxymethyl-2-azaspiro[4.5]dec-7-en-one (8b)Starting material <u>4b</u> (4.9 g, 20 mmol) + benzylamine (10.7 g, 100 mmol), method C. Recrystallization from ether/pet. ether afforded <u>8b</u> (4.02 g, 74%, colourless crystals), mp 51°C. ¹H-Nmr: (CDCl₃) (8, ppm) 7.44 - 7.17 (m, 5H, aromatic-H), 5.67 (m, 1H, H-7), 5.57 (m, 1H, H-8), 5.35 (dd, J = 11.0 and 1.6 Hz, 1H, OH), 4.53 (d, J = 14.5 Hz, 1H, H-1'/1), 4.45 (d, J = 14.5 Hz, 1H, H-1'/2), 4.08 (ddd, J = 12.0, 11.0 and 1.6 Hz, 1H, H-11/1), 3.44 (ddd, J = 12.0, 11.0 and 3.0 Hz, 1H, H-11/2), 3.25 (m, 2H, H-3), 2.57 (m, 1H, H-6/1), 2.28 (m, 1H, H-9/1), 2.06 - 1.78 (m, 5H, aliphatic-H). Ir: (KBr) 1665 cm⁻¹ (γ -lactam). Ms: m/z 271 (M⁺), 241 (M⁺-30), 212 (M⁺-59), 91 (PhCH₂⁺, base peak). <u>Anal.</u> Calcd for C₁₇H₂₁NO₂: C, 75.23; H, 7.82; N, 5.16. Found C, 75.42; H, 7.89; N, 5.02.

$(\underline{6RS.11RS})-\underline{2-Benzyl-11-hydroxymethyl-2-azaspiro[5.5]undecane (9a)$ Starting material <u>7a</u> (5.75 g, 20 mmol), method D, gave <u>9a</u> (5.09 g, 93%, yellow oil) and <u>9a</u>.HCl by recrystallization from ether (502 mg, 81%, yellow crystals), mp 40°C. ¹H-Nmr: (free base, CDCl₃) (8, ppm) 7.36 - 7.22 (m, 5H, aromatic-H), 6.75 (m, 1H, OH), 3.98 (dd, J = 12.0 and 2.0 Hz, 1H, H-12/1), 3.69 (d, J = 13.0 Hz, 1H, H-1'/1), 3.49 (dd, J = 12.0 and 3.0 Hz, 1H, H-12/2), 3.25 (d, J = 13.0 Hz, 1H, H-1'/2), 3.17 (d, J = 12.0 Hz, 1H, H-1/1), 2.82 (m, 1H, H-3/1), 1.90 - 1.53 (m, 7H, aliphatic-H), 1.50 - 1.10 (m, 8H, aliphatic-H). <u>9a</u>.HCl: Ir: (KBr) 3380 cm⁻¹ (OH, NH). Ms: m/z 273 (M^{*}-HCl), 182 (M^{*}-HCl-PhCH₂), 91 (PhCH₂^{*}, base peak). <u>Anal.</u> Calcd for C1₈H₂₇NO.HCl: C, 69.75; H, 9.13; N, 4.52; Cl, 11.44. Found C, 69.33; H, 9.00; N, 4.17; Cl, 11.83.

(5RS, 10RS) - 2-Benzyl - 10-hydroxymethyl - 2-azaspiro[4.5]decane (9b)Starting material <u>7b</u> (5.47 g, 20 mmol), method D, gave <u>9b</u> (4.67 g, 90%, yellow oil) and <u>9b</u>.HCl by recrystallization from ethanol (420 mg, 71%, yellow crystals), mp 152-155°C. ¹H-Nmr: (free base, CDCls) (8, ppm) 7.37 - 7.23 (m, 5H, aromatic-H), 6.10 (m, 1H, OH), 3.91 (dd, J = 11.0 and 4.0 Hz, 1H, H-11/1), 3.71 (d, J = 12.0 Hz, 1H, H-1'/1), 3.47 (d, J = 12.0 Hz, 1H, H-1'/2), 3.34 (dd, J = 11.0 and 4.0 Hz, 1H, H-11/2), 3.26 (d, J = 9.0 Hz, 1H, H-1'/1), 3.01 (dt, J = 4.0 and 10.0 Hz, 1H, H-3/1), 2.22 (dt, J = 8.0 and 10.0 Hz, 1H, H-3/2), 1.96 (dt, J = 14.0 and 8.0 Hz, 1H, aliphatic-H), 1.96 (d, J = 9.0 Hz, 1H, H-1/2), 1.75 (m, 1H, aliphatic-H), 1.70 - 1.40 (m, 6H, aliphatic-H), 1.33 - 1.10 (m, 3H, aliphatic-H). <u>9b</u>.HCl: Ir: (KBr) 3040 cm⁻¹ (OH, NH). Ms: m/z 259 (M^{*}-HCl), 168 (M^{*}-HCl-PhCH₂), 91 (PhCH₂⁺, base peak). <u>Anal.</u> Calcd for C17H2sNO.HCl: C, 68.99; H, 8.87; N, 4.73; Cl, 12.00. Found C, 69.06; H, 9.10; N, 4.98; Cl, 11.78.

 $(\underline{6RS,11SR})-\underline{2-Benzyl-11-hydroxymethyl-2-azaspiro[5.5]undec-8-ene}$ (10a) Starting material <u>8a</u> (5.71 g, 20 mmol), method D, gave <u>10a</u> (4.07 g, 75%, yellow oil) and <u>10a</u>.HCl by recrystallization from ether (468 mg, 76%, yellow crystals), mp 54°C. ¹H-Nmr: (free base, CDCl₃) (6, ppm) 7.40- 7.20(m, 5H, aromatic-H), 7.05 (m, 1H, OH), 5.60 (m, 1H, H-8), 5.48 (m, 1H, H-9), 3.99 (dd, J = 12.0 and 2.0 Hz, 1H, H-12/1), 3.59 (d, J = 12.0 Hz, 1H, H-1'/1), 3.44 (dd, J = 12.0 and 3.0 Hz, 1H, H-12/2), 3.35 (d, J = 12.0 Hz, 1H, H-1'/2), 3.10 (d, J = 12.0 Hz, 1H, H-1/1), 2.88 (m, 1H, H-3/1), 2.34 (m, 1H, aliphatic-H), 2.00 - 1.80 (m, 4H, aliphatic-H), 1.75 - 1.55 (m, 4H, aliphatic-H), 1.61 (d, J = 12.0 Hz, 1H, H-1/2), 1.27 (m, 1H, alipha-tic-H). <u>10a</u>.HCl: Ir: (KBr) 3370 cm⁻¹ (OH, NH), 1655 cm⁻¹ (C=C). Ms: m/z 271 (M⁺-HCl), 180 (M⁺-HCl-PhCH₂), 91 (PhCH₂⁺, base peak). <u>Anal.</u> Calcd for C18H₂₅NO.HCl: C, 70.21; H, 8.53; N, 4.55; Cl, 11.51. Found C, 69.96; H, 8.62; N, 4.24; Cl, 11.01.

(5RS, 10RS) - 2 - Benzyl - 10 - hydroxymethyl - 2 - azaspirof 4.5] dec - 7 - ene (10b)Starting material <u>8b</u> (5.43 g, 20 mmol), method D, gave <u>10b</u> (4.84 g, 94%, yellow oil) and <u>10b</u>. HCl by recrystallization from ethanol (403 mg, 72%, yellow crystals), mp 180 - 182°C. ¹H - Nmr: (free base, CDCl₃) (8, ppm) 7.40 - 7.20 (m, 5H, aromatic -H), 5.68 (m, 1H, H-7), 5.59 (m, 1H, H-8), 3.96 (dd, J = 13.0 and 2.0 Hz, 1H, H-11/1), 3.75 (d, J = 12.5 Hz, 1H, H-1'/1), 3.47 (d, J = 12.5 Hz, 1H, H-1'/2), 3.38 (dd, J = 13.0 and 2.0 Hz, 1H, H-11/2), 3.11 (d, J = 10.0 Hz, 1H, H-1/1), 3.03 (dt, J = 4.0 and 9.0 Hz, 1H, H-3/1), 2.51 (m, 1H, aliphatic-H), 2.24 - 1.93 (m, 5H, aliphatic-H), 1.88 (d, J = 10.0 Hz, 1H, H-1/2), 1.68 - 1.50 (m, 2H, aliphatic-H). <u>10b</u>. HCl: Ir: (KBr) 3370 cm⁻¹ (OH, NH), 1655 cm⁻¹ (C=C). Ms: m/z 257 (M⁺-HCl), 166 (M⁺-HCl-PhCH₂), 91 (PhCH₂⁺, base peak). <u>Anal.</u> Calcd for C_{17H23}NO.HCl: C, 69.48; H, 8.25; N, 4.76; Cl, 12.06. Found C, 69.59; H, 8.31; N, 4.70; Cl, 12.00.

(5RS.10RS)-10-Hydroxymethyl-2-phenyl-2-azaspiro[4.5]dec-7-en-one (12)Starting material <u>4b</u> (4.9 g, 20 mmol) + aniline (9.31 g, 100 mmol), method C. Recrystallization from methanol afforded <u>12</u> (1.65 g, 32%, colourless crystals), mp 75-77°C. ¹H-Nmr: (CDCl₃) (8, ppm) 7.60 (d, J = 8.0 Hz, 2H, H-2', H-6'), 7.39 (t, J = 8.0 Hz, 2H, H-3', H-5'), 7.19 (t, J = 8.0 Hz, 1H, H-4'), 5.69 (m, 1H, H-7), 5.61 (m, 1H, H-8), 4.75 (m, 1H, OH), 4.09 (dd, J = 12.0 and 8.0 Hz, 1H, H-11/1), 3.89 (dt, J = 10.0 and 8.0 Hz, 1H, H-3/1), 3.83 (ddd, J = 10.0, 8.0 and 4.0 Hz, 1H, H-3/2), 3.45 (d, J = 12.0 Hz, 1H, H-11/2), 2.57 (d, J = 18.0 Hz, 1H, H-6/1), 2.32 (m, 1H, H-9/1), 2.20 - 1.90 (m, 5H, aliphatic-H). Ir: (KBr) 1670 cm⁻¹ (γ -lactam). Ms: m/z 257 (M⁺), 227 (M⁺-30), 198 (M⁺-59), 77 (Ph⁺, base peak). <u>Anal.</u> Calcd for C16H19NO2: C, 74.67; H, 7.46; N, 5.44. Found C, 74.76; H, 7.57; N, 5.53.

(<u>5RS,10RS</u>)-<u>10-Hydroxymethyl-2-phenyl-2-azaspiro[4.5]dec-7-ene</u> (<u>13</u>) Starting material <u>12</u> (5.15 g, 20 mmol), method D, gave <u>13</u> + <u>15</u> (1:5). The mixture was separated by column chromatography (silica gel, CH₂Cl₂) to yield <u>13</u> (633 mg, 13%, yellow oil). 'H-Nmr: (free base, CDCl₃) (8, ppm) 7.23 (t, J = 8.0 Hz, 2H, H-3', H-5'), 6.69 (t, J = 8.0 Hz, 1H, H-4'), 6.58 (d, J = 8.0 Hz, 2H, H-2', H-6'), 5.68 (m, 1H, H-7), 5.63 (m, 1H, H-8), 3.68 (dd, J = 11.0 and 5.0 Hz, 1H, H-11/1), 3.63 (dd, J = 11.0 and 6.0 Hz, 1H, H-11/2), 3.39 (dt, J = 3.0 and 10.0 Hz, 1H, H-3/1), 3.36 (q, J = 10.0 Hz, 1H, H-3/2), 3.31 (d, J = 10.0 Hz, 1H, H-1/1), 3.08 (d, J = 10.0 Hz, 1H, H-1/2), 2.35 - 2.15 (m, 7H, aliphatic-H).

(<u>3aRS,5aSR,9aSR</u>)-<u>3-Benzy1-1,2,3,3a,5,5a,6,9-octahydroisobenzofuro[2,3-b]</u>pyrrole (<u>14</u>)

LiAlH4 (7.2 g, 190 mmol) was suspended in dry THF (500 ml) followed by addition of <u>8b</u> (26 g, 95 mmol) dissolved in THF (100 ml) at 0°C. The mixture was refluxed for 2 h, hydrolysed by addition of H₂O (35 ml) and stirred for 2 h at room temperature. The slurry was removed by filtration and washed with ethyl acetate (100 ml). Evaporation of the solvent gave <u>10b</u> + <u>14</u> (1:1). The mixture was separated by column chromatography (silica gel, CH₂Cl₂) to yield <u>10b</u> (9.05 g, 37%, yellow oil) and <u>14</u> (10.68 g, 44%, yellow oil). ¹H-Nmr: (CDCl₃) (δ , ppm) 7.40 - 7.16 (m, 5H, aromatic-H), 5.76 (m, 1H, H-8), 5.68 (m, 1H, H-7), 4.56 (s, 1H, H-3a), 4.00 (d, J = 13.0 Hz, 1H, H-1'/1), 3.95 (dd, J = 8.0 and 4.0 Hz, 1H, H-5/1), 3.76 (d, J = 13.0 Hz, 1H, H-1'/2), 3.57 (dd, J = 8.0 and 2.0 Hz, 1H, H-5/2), 2.87 (dt, J = 3.0 and 9.0 Hz, 1H, H-2/1), 2.68 (q, J = 9.0 Hz, 1H, H-2/2), 2.41 - 1.69 (m, 7H, aliphatic-H).

(<u>3aRS.5aSR.9aSR</u>)-<u>3-Pheny1-1.2.3.3a.5.5a.6.9-octahydroisobenzofuro[2.3-b]</u>pyrrole (15)

Starting material <u>12</u> (5.15 g, 20 mmol), method D, gave <u>13</u> + <u>15</u> (1:5). The mixture was separated by column chromatography (silica gel, CH₂Cl₂) to yield <u>15</u> (3.19 g, 66%, yellow oil). ¹H-Nmr: (CDCl₃) (8, ppm) 7.25 (dd, J = 8.0 and 6.6 Hz, 2H, H-3', H-5'), 6.79 (d, J = 8.0 Hz, 2H, H-2', H-6'), 6.76 (t, J = 6.6 Hz, 1H, H-4'), 5.82 (m, 1H, H-8), 5.73 (m, 1H, H-7), 5.15 (s, 1H, H-3a), 4.19 (dd, J = 9.0 and 5.0 Hz, 1H, H-5/1), 3.64 (dd, J = 9.0 and 3.6 Hz, 1H, H-5/2), 3.52 (dt, J = 4.0 and 8.0 Hz, 1H, H-2/1), 3.47 (q, J = 8.0 Hz, 1H, H-2/2), 2.37 - 2.15 (m, 4H, aliphatic-H), 2.10 (m, 1H, H-9/2), 2.05 (m, 1H, H-6/2), 1.85 (ddd, J= 12.0, 8.0 and 4.0 Hz, 1H, H-1/2).

<u>1.3-Bis(1-oxoperhydroisobenzofuran-7a-yl)propane</u> (16)

Starting material <u>1</u> (28 g, 200 mmol), electrophile 1,3-dibromopropane (102 ml, 1 mol), method A. <u>3a</u> was separated by distillation (bp 138-140°C/ 0.03 mm Hg). The residue was recrystallized from ethyl acetate to afford <u>16</u> (9.35 g, 29%, colourless crystals), mp 118-120°C. Starting material <u>17</u> (31.6 g, 100 mmol), method B. Recrystalization from ethyl acetate yielded <u>16</u> (31.7 g, 99%, colourless crystals), mp 118-120°C. ¹H-Nmr: (CDCl₃) (8, ppm) 4.27 (dd, J = 8.0 and 6.0 Hz, 2H, H-3/1, H-3/1'), 3.98 (dd, J = 8.0 and 6.0 Hz, 2H, H-3/2, H-3/2'), 2.32 (qui, J = 6.0 Hz, 2H, H-3a, H-3a'), 1.89 - 1.78 (m, 2H, aliphatic-H), 1.78 - 1.60 (m, 4H, aliphatic-H), 1.59 -1.25 (m, 16H, aliphatic-H). Ir: (KBr) 1760 cm⁻¹ (γ -lactone). Ms: m/z 320 (M⁺), 181 (M⁺-139), 167 (M⁺-153), 139 (M⁺-181). <u>Anal.</u> Calcd for C19Hz8O4: C, 71.20; H, 8.83. Found C, 70.98; H, 9.06.

1.3-Bis(1-oxo-3a,4,7,7a-tetrahydroisobenzofuran-7a-v1)propane (17) Starting material <u>2</u> (27.6 g, 200mmol), electrophile 1,3-dibromopropane (102 ml, 1 mol), method A. <u>4a</u> was separated by distillation (bp 135-136°C/ 0.02 mm Hg). The residue was recrystallized from ethyl acetate/ether (1:1) to give <u>17</u> (9.2 g, 29%, colourless crystals), mp 93-95°C. ¹H-Nmr: (CDCl₃) (&, ppm) 5.76 (m, 4H, H-5, H-5', H-6, H-6'), 4.29 (t, J = 9.0 Hz, 2H,

H-3/1, H-3/1'), 3.89 (t, J = 9.0 Hz, 2H, H-3/2, H-3/2'), 2.63 (m, 2H, H-3a, H-3a'), 2.40 - 1.20 (m, 14H, aliphatic-H). Ir: (KBr) 1770 cm⁻¹ (γ -lactone). Ms: m/z 316 (M⁺), 179 (M⁺-137), 165 (M⁺-151), 137 (M⁺-179). Anal. Calcd for C₁₉H₂₄O₄: C, 72.11; H, 7.66. Found C, 72.00; H, 7.52.

REFERENCES

- 1. R. D. Allen and G. A. R. Johnston, <u>Med. Res</u>. <u>Rev.</u>, 1983, 3, 91.
- D. F. Smith, ed. "CRC Handbook of Stereoisomers. Drugs in Psychopharmacology", CRC Press: Boca Raton, 1983, pp. 369-398.
- P. Krogsgaard-Larsen, E. Falch, and V. Christensen, <u>Drugs of the</u> <u>Future</u>, 1984, 9, 597.
- 4. D. M. Bailey and R. E. Johnson, J. Org. Chem., 1970, 35, 3574.
- 5. B. Belleau and J. Puranen, <u>Canad</u>. <u>J</u>. <u>Chem</u>., 1965, 43, 2551.
- 6. B. Herradón and D. Seebach, Helv. Chim. Acta, 1989, 72, 690.
- 7. R. Stejskal, E. Urban, and H. Völlenkle, <u>Monatsh</u>. <u>Chem</u>., 1991, 122, 145.
- 8. U. Mostler and E. Urban, Monatsh. Chem., 1989, 120, 349.

Received, 18th October, 1991