SYNTHESES OF $(\pm)-\underline{Z}$ -GEISSOSCHIZOL, $(\pm)-3$ -EPI $-\underline{Z}$ -GEISSOSCHIZOL, (\pm) -CORYNANTHEIDOL, (\pm) -DIHYDROCORYNANTHEOL, $(\pm)-3$ -EPI-DIHYDRO-CORYNANTHEOL AND THE CORRESPONDING CORYNAN-17-OIC ACID METHYL ESTERS

Mauri Lounasmaa^{*}, Reija Jokela, Birgit Tirkkonen, Jari Miettinen and Minna Halonen

Laboratory for Organic and Bioorganic Chemistry, Technical University of Helsinki, SF-02150 Espoo, Finland

<u>Abstract</u> - The utility of the Claisen rearrangement using carefully separated, diastereoisomeric allylic alcohols (<u>1a</u>) and (<u>1b</u>) in the preparation of $(\pm)-\underline{Z}$ -geissoschizol (<u>4a</u>), $(\pm)-3$ -epi- \underline{Z} -geissoschizol (<u>4b</u>), (\pm) -corynantheidol (<u>7a</u>), (\pm) -dihydrocorynantheol (<u>8a</u>), (\pm) -3epi-dihydrocorynantheol (<u>8b</u>) and the corresponding corynan-17-oic acid methyl esters (<u>3a</u>, <u>3b</u>, <u>5a</u>, <u>6a</u> and <u>6b</u>) is shown. Special attention is paid to the stereochemical outcome of catalytic (PtO₂) hydrogenation of the C(20) <u>Z</u>-ethylidene side chain.

INTRODUCTION

Continuing our efforts on stereoselective preparation of indole alkaloids of corynantheine-type^{1,2} we turned to the Claisen rearrangement, known to be highly stereoselective,³⁻⁵ utilizing allylic alcohols (<u>la</u>) and (<u>1b</u>)⁶ together with dimethylacetamide dimethylacetal.⁷ The formation, at will, of compounds possessing the C(3)H-C(15)H <u>cis</u> or <u>trans</u> relationship[#] combined with the

[#]The biogenetic numbering of Le Men and Taylor⁸ is used.

presence of a C(20) <u>Z</u>-ethylidene side chain, catalytically easily reducible, could be expected to provide a short route to compounds possessing the <u>allo</u>-(3α , 15 α , 20 α), <u>normal</u>-(3α , 15 α , 20 β), <u>epiallo</u>-(3β , 15 α , 20 α) and <u>pseudo</u>-(3β , 15 α , 20 β) configurations.

Ziegler and Sweeny⁹ have earlier synthesized dihydrocorynantheol (<u>8a</u>) and 3epi-dihydrocorynantheol (<u>8b</u>) employing the diastereomeric mixtures of allylic alcohols (<u>1a</u>) and (<u>1b</u>) in Claisen rearrangement with dimethylacetamide dimethylacetal followed by hydrolysis, esterification, LiAlH₄ reduction and catalytic hydrogenation. The fact, that Ziegler and Sweeny used in their synthesis the diastereomeric mixtures of compounds (<u>1a</u>) and (<u>1b</u>), does not permit in their case the experimental verification of the expected stereoselectivity of the Claisen rearrangement. Several expected compounds [<u>i.e.</u> <u>Z</u>-geissoschizol (<u>4a</u>) and deformyl-<u>Z</u>-geissoschizine (<u>3a</u>)] were not detected or identified in their reaction mixtures. Moreover, many questions remain concerning the stereochemical outcome of the catalytic hydrogenation of the <u>Z</u>-ethylidene side chain of the formed products.

Thus, it seemed to us necessary to execute a careful re-examination of the whole reaction path and put the identification of the formed products on a solid basis. Furthermore, we deemed it interesting to find out if the intermediate corynan-17-oic acid methyl esters [deformyl- \underline{Z} -geissoschizine (<u>3a</u>) and deformyl-3-epi- \underline{Z} -geissoschizine (<u>3b</u>)] could be prepared directly using trimethyl orthoacetate¹⁰ instead of dimethylacetamide dimethylacetal in the Claisen rearrangement. The present paper describes our results.

RESULTS AND DISCUSSION

Our first task, in order to take full advantage of the expected high stereoselectivity of the Claisen rearrangement, was to divide carefully our earlier described^{11,12} allylic alcohol mixture⁶ into its diastereoisomeric

components (<u>1a</u>) and (<u>1b</u>). This was done by successive fractional crystallizations in EtOH (<u>cf</u>. Experimental).

Heating compound (<u>1a</u>) with dimethylacetamide dimethylacetal in dioxane produced the amide (<u>2a</u>) with high stereoselectivity. Alkaline hydrolysis of amide (<u>2a</u>), followed by esterification, yielded unsaturated ester [deformyl-<u>Z</u>-geissoschizine (<u>3a</u>)][#], which was transformed by LiAlH₄ reduction to the corresponding alcohol [<u>Z</u>-geissoschizol (<u>4a</u>)] (Scheme 1).

Scheme 1

Similarly, treatment of compound (<u>1b</u>) with dimethylacetamide dimethylacetal yielded amide (<u>2b</u>) with high stereoselectivity. Alkaline hydrolysis and esterification of amide (<u>2b</u>), followed by LiAlH_4 reduction of the methyl ester (<u>3b</u>), gave the corresponding alcohol [3-epi-<u>Z</u>-geissoschizol (<u>4b</u>)] (Scheme 2).

[#]Ziegler and Sweeny⁹ did not detect ester (<u>3a</u>) in their reaction mixture.

Scheme 2

Thus, the expected high stereoselectivity of the Claisen rearrangement using dimethylacetamide dimethylacetal in the preparation of \underline{Z} -geissoschizol (<u>4a</u>) and 3-epi- \underline{Z} -geissoschizol (<u>4b</u>) was experimentally proven.

We then turned our attention to the direct transformation of allylic alcohols (<u>1a</u>) and (<u>1b</u>) to the unsaturated esters [deformyl-<u>Z</u>-geissoschizine (<u>3a</u>) and deformyl-<u>3</u>-epi-<u>Z</u>-geissoschizine (<u>3b</u>)], respectively, using trimethyl orthoacetate in the Claisen rearrangement.¹⁰ In both cases the desired unsaturated esters (<u>3a</u>) and (<u>3b</u>) were obtained stereoselectively in high yield. As above, LiAlH₄ treatment of the formed unsaturated esters afforded <u>Z</u>-geissoschizols (<u>4a</u>) and (<u>4b</u>).

Catalytic reduction of the ethylidene side chain¹³ of the unsaturated esters (<u>3a</u>) and (<u>3b</u>) seemed to be ideally suited for a short and easy preparation of the corresponding saturated esters [(<u>5a</u>) (<u>allo</u>) and (<u>6a</u>) (<u>normal</u>)] and [(<u>5b</u>) (<u>epiallo</u>) and (<u>6b</u>) (<u>pseudo</u>)], respectively. Similarly, reduction of the

ethylidene side chain of the <u>Z</u>-geissoschizols (<u>4a</u>) and (<u>4b</u>) would at least theoretically give direct access to corynantheidol (<u>7a</u>) (<u>allo</u>) and dihydrocorynantheol (<u>8a</u>) (<u>normal</u>), and 3-epicorynantheidol (<u>7b</u>) (<u>epiallo</u>) and 3epidihydrocorynantheol (<u>8b</u>) (<u>pseudo</u>), respectively. In analogy with earlier results,¹³⁻¹⁵ however, strong stereochemical preferences in the reduction of the ethylidene side chains could be predicted. Moreover, in certain cases epimerizations at C(3) were expected (<u>vide infra</u>).

 $\frac{5a}{7a} \operatorname{R=C00CH}_{3}_{3}$

 $H^{W} R$ $\underline{6a} R = COOCH_{3}$ $\underline{6a} R = CH_{2}OH$

н н


```
\frac{5b}{7b} R=C00CH_3 R=CH_2OH
```

 $\frac{6b}{8b} \operatorname{R=CH}_{2}OH$

To obtain a clear insight into the outcome of the catalytic reduction of the above compounds (<u>3a</u>, <u>3b</u>, <u>4a</u> and <u>4b</u>), strictly standardized reduction conditions were applied in all cases $[H_2$ (1 atm.), PtO₂, MeOH, room temperature]. Three different reaction times were used: 1 h, 3 h and 24 h. The results obtained are presented in Tables 1 - 4. The yield percentages given in the Tables are relative (For the absolute yields, see Experimental).

Table 1. Deformyl-Z-geissoschizine (3a) Reaction time: 1 h 5a (allo) ca. 40% 6a (normal) ca. 60% traces <u>5b (epiallo)</u> <u>6b</u> (<u>pseudo</u>) traces Reaction time: 3 h ______ 5a (allo) ca. 35% 6a (normal) ca. 65% <u>5b</u> (<u>epiallo</u>) traces <u>6b</u> (<u>pseudo</u>) traces Reaction time: 24 h 5a (allo) ca. 35% <u>6a (normal)</u> <u>ca.</u> 65% <u>5b (epiallo)</u> traces <u>6b</u> (<u>pseudo</u>) traces • Table 3. Z-Geissoschizol (<u>4a</u>) Reaction time: 1 h _____ <u>7a (allo)</u> <u>ca.</u> 45% <u>8a (normal)</u> <u>ca.</u> 55% <u>7b</u> (<u>epiallo</u>) traces <u>8b</u> (<u>pseudo</u>) traces

Table 2.

Def	ormyl-3-epi	- <u>Z</u> -geissosch	izine			
Rea	ction time:	lh	(<u>3b</u>)			
<u>7a</u>	(<u>allo)</u>	traces				
<u>8a</u>	(<u>normal</u>)	<u>ca.</u> 10%				
<u>7b</u>	(<u>epiallo</u>)	traces				
<u>8b</u>	(pseudo)	<u>ca.</u> 90%				
Rea	ction time:	3 h				
<u>7a</u>	(<u>allo</u>)	traces				
<u>8a</u>	(<u>normal</u>)	<u>ca.</u> 25%				
<u>7b</u>	(<u>epiallo</u>)	traces				
<u>8b</u>	(<u>pseudo</u>)	<u>ca.</u> 75% .				
Reaction time: 24 h						
<u>7a</u>	(<u>allo</u>)	traces				
<u>8a</u>	(<u>normal</u>)	<u>ca.</u> 50%				
<u>7b</u>	(<u>epiallo</u>)	traces				
<u>8b</u>	(<u>pseudo</u>)	<u>ca.</u> 50%				
Tab	le 4.					
3-E	pi- <u>Z</u> -geisso	schizol (<u>4b</u>)				
7a	(allo)	traces				

<u>7a</u>	(<u>allo</u>)	traces
<u>8a</u>	(normal)	<u>ca,</u> 10%
<u>7b</u>	(<u>epiallo</u>)	traces
<u>8b</u>	(<u>pseudo</u>)	<u>ca.</u> 90%

Table 3 (continued).			Table 4 (continued).			
<u>Z</u> -Geissoschizol (<u>4a</u>)			3-Epi- <u>Z</u> -geissoschizol (<u>4b</u>)			
Reaction time: 3 h			Reaction time: 3 h			
<u>7a</u>	(<u>allo</u>)	<u>ca.</u> 45%	<u>7a</u>	(<u>allo</u>)	traces	
<u>8a</u>	(<u>normal</u>)	<u>ca.</u> 55%	<u>8a</u>	(<u>normal</u>)	<u>ca.</u> 30%	
<u>7b</u>	(<u>epiallo</u>)	traces	<u>7b</u>	(<u>epiallo</u>)	traces	
<u>8b</u>	(<u>pseudo</u>)	traces	<u>8b</u>	(<u>pseudo</u>)	<u>ca.</u> 70%	
Reaction time: 24 h			Reaction time: 24 h			
<u>7a</u>	(<u>allo</u>)	<u>ca.</u> 40%	<u>7a</u>	(<u>allo</u>)	traces	
<u>8a</u>	(<u>normal</u>)	<u>ca.</u> . 60%	<u>8a</u>	(<u>normal</u>)	<u>ca</u> , 50%	
<u>7b</u>	(<u>epiallo</u>)	traces	<u>7b</u>	(<u>epiallo</u>)	traces	
<u>8b</u>	(<u>pseudo</u>)	traces	<u>8b</u>	(<u>pseudo</u>)	<u>ca.</u> 50%	

The results (Tables 1 - 4) clearly indicate that for deformyl- \underline{Z} geissoschizine (<u>3a</u>) and <u>Z</u>-geissoschizol (<u>4a</u>) [C(3)H-C(15)H <u>cis</u> relationship] the approach of the hydrogen is nearly equally favourable from both sides of the ethylidene side chain (leading to <u>allo</u> and <u>normal</u> series), whereas for deformyl-3-epi-<u>Z</u>-geissoschizine (<u>3b</u>) and 3-epi-<u>Z</u>-geissoschizol (<u>4b</u>) [C(3)H-C(15)H <u>trans</u> relationship] the reaction leads nearly exclusively to the <u>pseudo</u> structure, which then easily isomerizes to the <u>normal</u> structure. As a further confirmation of this isomerization, carefully purified 3-epidihydrocorynantheol (<u>Bb</u>) (<u>pseudo</u>) was subjected to the above described catalytic hydrogenation conditions for 48 h. An approximately 60/40 mixture of dihydrocorynantheol (<u>8a</u>) (<u>normal</u>) and 3-epi-dihydrocorynantheol (<u>8b</u>) (<u>pseudo</u>) was obtained.

The ¹³C nmr data of compounds (<u>1a</u>, <u>1b</u>, <u>2a</u>, <u>2b</u>, <u>3a</u>, <u>3b</u>, <u>4a</u>, <u>4b</u>, <u>5a</u>, <u>6a</u>, <u>6b</u>, <u>7a</u>, <u>8a</u>, and <u>8b</u>) are given in Figure 1. Comparison of the chemical shifts

Figure 1

found, taking into account the conformational considerations relevant for indolo[2,3-<u>a</u>]quinolizidines, provides clear evidence of the stereostructures depicted in the formulae. It is hoped that our present and earlier^{1,2} ¹³C nmr data will be useful in resolving future stereochemical problems in the corynantheine series.

CONCLUSIONS

The Claisen rearrangement of allylic alcohols (<u>1a</u>) and (<u>1b</u>) (followed by some mundane transformations) clearly allows an efficient preparation of esters [dehydroxymethyldihydrositsirikine analogues] (<u>5a</u>) (<u>allo</u>), (<u>6a</u>) (<u>normal</u>) and (<u>6b</u>) (<u>pseudo</u>). Similarly, it permits an efficient stereoselective preparation of corynantheidol (<u>7a</u>) (<u>allo</u>), dihydrocorynantheol (<u>8a</u>) (<u>normal</u>) and 3-epi-dihydrocorynantheol (<u>8b</u>) (<u>pseudo</u>). It does not, however, permit the direct preparation of compounds in the <u>epiallo</u> series (compounds <u>5b</u> and <u>7b</u>) in any appreciable quantities. We have recently presented an alternative route to 3-epi-corynantheidol (<u>7b</u>).²

EXPERIMENTAL

Ir spectra were recorded with a Perkin-Elmer 700 spectrophotometer in $CHCl_3$, if not otherwise stated. Ir absorption bands are expressed in reciprocal centimetres (cm⁻¹). ¹H and ¹³C nmr spectra were measured with either a Jeol JNM-FX 60 spectrometer working at 59.80 MHz (¹H nmr) and 15.04 MHz (¹³C nmr) or a Varian Gemini-200 spectrometer working at 199.975 MHz (¹H nmr) and 50.289 MHz (¹³C nmr). The spectra were recorded in CDCl₃, if not otherwise stated. Chemical shift data are given in ppm by reference to TMS (¹H nmr; $\delta_{\mu} = 0.0$ ppm) and CDCl₃ (¹³C nmr; $\delta_c = 77.0$ ppm) or DMSO-d₆ (¹³C nmr; $\delta_c = 39.5$ ppm). Abbreviations s, d, t, q, m and br are used to designate singlet, doublet, triplet, quartet, multiplet and broad, respectively. For the ¹³C nmr data, see Figure 1. Mass spectrometry (EIms and HRms) was done on a Jeol DX 303/DA 5000 instrument.

Separation of the alcohols (1a) and (1b):

The mixture of allylic alcohols $(\underline{1a})$ and $(\underline{1b})$,⁶ prepared according to our earlier described method,¹¹ was divided into its diastereoisomeric components (<u>1a</u>) and (<u>1b</u>) through successive fractional crystallizations in EtOH. The correct stereochemical choice between alcohols (<u>1a</u>) and (<u>1b</u>) (<u>vide supra</u>) was confirmed by their TLC (silica gel) behaviour. Alcohol (<u>1a</u>) was less polar than alcohol (<u>1b</u>), in good agreement with the results presented by Winterfeldt.¹⁵

Alcohol (<u>1a</u>): mp 228-229°C (EtOH). Ir (KBr): 3360 (br, NH and OH). ¹H Nmr (200 MHz) (DMSO-d₆): 1.19 (3H, d, J=6.4 Hz, $-CHCH_3$), 4.12 (1H, q, J=6.4, $-CHCH_3$), 5.69 (1H, m, -CH=C), 6.96 (1H, t, J=7.4 Hz, arom. H), 7.04 (1H, t, J=7.4 Hz, arom. H), 7.31 (1H, d, J=7.4 Hz, arom. H), 7.39 (1H, d, J=7.4 Hz, arom. H), 10.78 (1H, br s, NH). Ms: 268 (M^{*}), 267, 170 (100%), 169; HRms found: 268.1581. Calcd for $C_{17}H_{20}N_2O$: 268.1576.

Alcohol (<u>1b</u>): mp 249-252°C (EtOH). Ir (KBr): 3400 (br, NH and OH). ¹H Nmr (200 MHz) (DMSO-d₆): 1.17 (3H, d, J=6.4 Hz, -CHCH₃), 4.08 (1H, q, J=6.4 Hz, -C<u>H</u>CH₃), 5.67 (1H, m, -C<u>H</u>=C), 6.93 (1H, t, J=7.4 Hz, arom. H), 7.01 (1H, t, J=7.4 Hz, arom. H), 7.28 (1H, d, J=7.4 Hz, arom. H), 7.36 (1H, d, J=7.4 Hz, arom. H), 10.76 (1H, br s, NH). Ms: 268 (M^*), 267, 170 (100%), 169; HRms found: 268.1579. Calcd for C₁₇H₂₀N₂O: 268.1576.

Preparation of amide (2a):

A solution of alcohol $(\underline{1a})$ (357 mg, 1.33 mmol) and dimethylacetamide dimethylacetal (0.38 g, 2.86 mmol) in 1,4-dioxane (40 ml) was refluxed for 24 h. Evaporation and purification by flash chromatography (silica gel,

CH₂Cl₂/MeOH:98/2) gave amide (<u>2a</u>) [280 mg (83%)]. mp 209-211°C (toluene) (lit.,⁹ 210-213°C). Ir: 3300 (NH), 2830, 2780 (Bohlmann bands), 1630 (C=O). ¹H Nmr (60 MHz): 1.70 (3H, d, J=7 Hz, =CHC<u>H</u>₃), 3.01 (6H, s, -CON(CH₃)₂), 5.24 (1H, m, =C<u>H</u>CH₃), 7.02-7.50 (4H, m, arom. H), 8.63 (1H, br s, NH). Ms: 337 (M⁺), 265, 252 (100%), 221; HRms found: 337.2178. Calcd for C₂₁H₂₇N₃O: 377.2154.

<u>Preparation of amide (2b):</u>

A solution of alcohol (<u>1b</u>) (173 mg, 0.65 mmol) and dimethylacetamide dimethylacetal (0.19 g, 1.43 mmol) in 1,4-dioxane (20 ml) was refluxed for 24 h. Evaporation and purification as described for amide <u>2a</u> (<u>vide supra</u>), gave amide (<u>2b</u>) [156 mg (72%)]. mp 235-237°C (toluene) (lit., ⁹ 234-238°C). Ir: 3300 (NH), 2830, 2780 (Bohlmann bands), 1630 (C=O). ¹H Nmr: 1.68 (3H, d, J=7 Hz, =CHC<u>H₃</u>), 3.00 and 3.06 (2x3H, s, -CON(CH₃)₂), 3.81 (1H, br d, J=7.5 Hz, H-3), 5.36 (1H, q, J=7 Hz, =C<u>H</u>CH₃), 7.02-7.50 (4H, m, arom. H), 8.74 (1H, br s, NH). Ms: 337 (M^{*}), 265, 251 (100%), 221; HRms found: 337.2163. Calcd for $C_{21}H_{27}N_3$ O: 377.2154.

<u>Preparation of deformyl-Z-geissoschizine (3a):</u>

A solution of amide (<u>2a</u>) (214 mg, 0.64 mmol) and KOH (10 g, 178.6 mmol) in EtOH (94%, 40 ml) was refluxed for 17 h (Ar atm). The reaction mixture was evaporated in vacuum, and acetyl chloride (20 ml) in MeOH (400 ml) premixed at 0°C during 0.5 h and stirred at 0°C for 0.5 h was carefully added during 20 min at 0°C. The mixture was stirred at rt for 3 d (Ar atm), after which it was neutralized by pouring into a suspension of solid NaHCO₃ in CH₂Cl₂. The inorganic salts were filtered off and the filtrate was evaporated. The residue was dissolved in CH₂Cl₂, washed with a saturated NaHCO₃ solution and H₂O and dried (Na₂SO₄). Purification by column chromatography (alumina, CH₂Cl₂/MeOH:98/2) yielded deformyl-<u>Z</u>-geissoschizine (<u>3a</u>)¹⁶ [133 mg (65%)]. Amorphous material (lit. 67-68.5°C dec.¹⁷, oil¹⁸). Ir: 3430 (NH), 2830, 2780

(Bohlmann bands), 1730 (C=O). ¹H Nmr (60 MHz): 1.70 (3H, d, J=7 Hz, =CHCH₃), 3.77 (3H, s, $-CO_2CH_3$), 5.23 (1H, q, J=7 Hz, =CHCH₃). 7.09-7.50 (4H, m, arom. H), 8.25 (1H, br s, NH). Ms: 324 (M^* , 100%), 323, 309, 293, 265, 251, 237, 223, 170, 169, 156; HRms found: 324.1838. Calcd for $C_{20}H_{24}N_2O_2$: 324.1838.

Preparation of deformyl-3-epi-Z-geissoschizine (3b):

A solution of amide (2b) (108 mg, 0.32 mmol) with KOH (5 g, 89.3 mmol) in EtOH (94%, 20 ml) was refluxed for 17 h (Ar atm). The reaction mixture was evaporated in vacuum, and acetyl chloride (10 ml) in MeOH (200 ml) premixed at 0°C during 0.5 h and stirred at 0°C for 0.5 h was carefully added during 20 min at 0°C. The mixture was stirred at room temperature for 3 d (Ar atm) and worked-up and purified as described for deformyl-Z-geissoschizine (3a) (<u>vide supra</u>), to yield deformyl-3-epi-Z-geissoschizine (3b)¹⁶ [64 mg (62%)]. Amorphous material (lit.,¹⁸ oil). Ir 3410 (NH), 2830, 2770 (Bohlmann bands), 1730 (C=O). ¹H Nmr (60 MHz): 1.70 (3H, d, J=7 Hz, =CHCH₃), 3.72 (3H, s, -CO₂CH₃), 5.41 (1H, q, J=7 Hz, =CHCH₃), 7.10-7.50 (4H, m, arom. H), 8.28 (1H, br s, NH). Ms: 324 (M^{*}, 100%), 323, 309, 293, 265, 251, 237, 223, 170, 169, 156; HRms found: 324.1865. Calcd for C₂₀H₂₄N₂O₂: 324.1838.

Preparation of Z-geissoschizol (4a):

A solution of ester (<u>3a</u>) (83 mg, 0.26 mmol) in dry THF (4 ml) was added to a suspension of LiAlH₄ (30 mg, 0.79 mmol) in dry THF (5 ml) during 5 min at 0°C (Ar atm). After 2.5 h at room temperature H₂O was added and the mixture was extracted with CH₂Cl₂. The combined organic layers were washed with H₂O and dried (Na₂SO₄). Purification by column chromatography (alumina, CH₂Cl₂/MeOH:98/2) yielded <u>Z</u>-geissoschizol (<u>4a</u>) [67 mg (88%)]. mp 180-182°C (CHCl₃). Ir: 3440 (NH), 3300 (OH), 2830, 2780 (Bohlmann bands). ¹H Nmr (60 MHz): 1.65 (3H, d, J=6.5 Hz, =CHC<u>H₃</u>), 3.56 (2H, m, -CH₂OH), 5.21 (1H, m, =C<u>H</u>CH₃), 7.06-7.52 (4H, m, arom. H), 8.70 (1H, br s, NH). Ms: 296 (M^{*}, 100%),

295, 265, 251, 170, 169, 156; HRms found: 296.1916. Calcd for $C_{19}H_{24}N_2O$: 296.1890.

Preparation of 3-epi-Z-geissoschizol (4b):

A solution of ester (<u>3b</u>) (72 mg, 0.22 mmol) in dry THF (4 ml) was added to a suspension of LiAlH₄ (26 mg, 0.68 mmol) in dry THF during 5 min at 0°C (Ar atm). After 1.5 h at room temperature the mixture was worked-up and purified as described for <u>Z</u>-geissoschizol (<u>4a</u>) (<u>vide supra</u>), to yield 3-epi-<u>Z</u>geissoschizol (<u>4b</u>) [55 mg (85%)]. mp 191-193°C (CHCl₃) (lit., ⁹ 193-195°C). Ir: 3400 (br, NH and OH), 2820, 2770 (Bohlmann bands). ¹H Nmr (60 MHz): 1.61 (3H, d, J=6.5 Hz, =CHC<u>H₃</u>), 3.55 (2H, m, -C<u>H</u>₂OH), 5.28 (1H, m, =C<u>H</u>CH₃), 7.14-7.50 (4H, m, arom. H), 8.34 (1H, br s, NH). Ms: 296 (M^{*}), 295 (100%), 265, 251, 170, 169; HRms found: 296.1916. Calcd for C₁₀H₂₄N₂O: 296.1890.

<u>Catalytic hydrogenation of Z-geissoschizol (4a):</u>

A. Hydrogenation (MeOH, PtO_2 , 1 h) of <u>Z</u>-geissoschizol (<u>4a</u>) (50 mg, 0.17 mmol), followed by purification by flash chromatography (silica gel; hexane/EtOAc/MeOH:5/3/0.6, increasing the amount of MeOH during the elution), afforded corynantheidol (<u>7a</u>) (18 mg, 36%), dihydrocorynantheol (<u>8a</u>) (24 mg, 48%), 3-epi-corynantheidol (<u>7b</u>) (traces) and 3-epi-dihydrocorynantheol (<u>8b</u>) (traces).

B. Hydrogenation (MeOH, PtO_2 , 3 h) of <u>Z</u>-geissoschizol (<u>4a</u>) (50 mg, 0.17 mmol), followed by purification as above, afforded corynantheidol (<u>7a</u>) (18 mg, 36%), dihydrocorynantheol (<u>8a</u>) (24 mg, 48%), 3-epi-corynantheidol (<u>7b</u>) (traces) and 3-epi-dihydrocorynantheol (<u>8b</u>) (traces).

C. Hydrogenation (MeOH, PtO_2 , 24 h) of <u>Z</u>-geissoschizol (<u>4a</u>) (48 mg, 0.16 mmol), followed by purification as above, afforded corynantheidol (<u>7a</u>) (16

mg, 34%) and dihydrocorynantheol (<u>8a</u>) (24 mg, 50%), 3-epi-corynantheidol (<u>7b</u>) (traces) and 3-epi-dihydrocorynantheol (<u>8b</u>) (traces).

Dihydrocorynantheol (<u>8a</u>): mp 178-180°C (CH_2Cl_2) (lit. 178-180.5°C,⁹ 181-183°C,¹⁹ 178-181°C,²⁰ 179-179.5°C²¹). Ir (KBr): 3420 (NH), 3260 (OH). ¹H Nmr (60 MHz): 0.88 (3H, t, J=7 Hz, $-CH_2CH_3$), 3.68 (2H, t, J=6 Hz, $-CH_2OH$), 7.02-7.54 (4H, m, arom. H), 8.52 (1H, br s, NH). Ms: 298 (M⁺), 297 (100%), 225, 184, 170, 169, 156; HRms found: 298.2035. Calcd for $C_{10}H_{26}N_2O$: 298.2045.

Corynantheidol (<u>7a</u>): mp 163-165°C (CH_2Cl_2) (lit. 163-165°C,² 158-162°C,²² 158-160°C,²³ 157-159°C,²⁴ 160-161°C,²⁵ 162-164°C²⁶). Ir: 3400 (br, NH and OH), 2830, 2780 (Bohlmann bands).¹H Nmr (60 MHz): 0.91 (3H, t, J=7 Hz, $-CH_2CH_3$), 3.72 (2H, t, J=6 Hz, $-CH_2OH$), 7.04-7.50 (4H, m, arom. H), 8.10 (1H, br s, NH). Ms: 298 (M^{*}), 297 (100%), 225, 184, 170, 169, 156; HRms found: 298.2038. Calcd for $C_{19}H_{26}N_2O$: 298.2045.

Catalytic hydrogenation of 3-epi-Z-geissoschizol (4b):

A. Hydrogenation (MeOH, PtO_2 , 1 h) of $3-epi-\underline{Z}$ -geissoschizol (<u>4b</u>) (56 mg, 0.19 mmol), followed by purification as described for <u>Z</u>-geissoschizol (<u>4a</u>) (<u>vide</u> <u>supra</u>), afforded corynantheidol (<u>7a</u>) (traces), dihydrocorynantheol (<u>8a</u>) (4 mg, 7%), 3-epi-corynantheidol (<u>7b</u>) (traces) and 3-epi-dihydrocorynantheol (<u>8b</u>) (40 mg, 71%).

B. Hydrogenation (MeOH, PtO₂, 3 h) of $3-epi-\underline{Z}-geissoschizol$ (<u>4b</u>) (50 mg, 0.17 mmol), followed by purification as above, afforded corynantheidol (<u>7a</u>) (traces), dihydrocorynantheol (<u>8a</u>) (12 mg, 24%), 3-epi-corynantheidol (<u>7b</u>) (traces) and 3-epi-dihydrocorynantheol (<u>8b</u>) (27 mg, 54%).

C. Hydrogenation (MeOH, PtO₂, 24 h) of 3-epi- \underline{Z} -geissoschizol (<u>4b</u>) (55 mg, 0.19 mmol), followed by purification as above, afforded corynantheidol (<u>7a</u>)

(traces), dihydrocorynantheol (<u>8a</u>) (22 mg, 40%), 3-epi-corynantheidol (<u>7b</u>) (traces) and 3-epi-dihydrocorynantheol (<u>8b</u>) (21 mg, 38%).

3-Epi-dihydrocorynantheol (<u>8b</u>): Amorphous material (lit. mp 84-87[°]C,⁹ amorphous material²⁵). Ir: 3300 (br, NH and OH). ¹H Nmr (60 MHz): 0.86 (3H, t, J=7 Hz, $-CH_2CH_3$), 3.78 (2H, t, J=6 Hz, $-CH_2OH$), 4.06 (1H, m, H-3), 7.10-7.50 (4H, m, arom. H), 8.15 (1H, br s, NH). Ms: 298 (M⁺), 297 (100%), 225, 170, 169, 156; HRms found: 298.2041. Calcd for $C_{10}H_{22}N_3O$: 298.2045.

Epimerization of 3-epi-dihydrocorynantheol (8b) to dihydrocorynantheol (8a):

A mixture of 3-epi-dihydrocorynantheol (<u>8b</u>) (52 mg, 0.17 mmol) and PtO_2 (45 mg) in MeOH (20 ml) was stirred under 1 atm of hydrogen at rt for 48 h. Removal of the catalyst by filtration and evaporation, followed by purification by flash chromatography (silica gel; hexane/EtOAc/MeOH:5/3/0.8, increasing the amount of MeOH during the elution), afforded dihydrocorynantheol (<u>8a</u>)[24 mg (46%)] and 3-epi-dihydrocorynantheol (<u>8b</u>)[16 mg (31%)].

<u>Alternative preparation of deformyl-Z-geissoschizine (3a):</u>

Alcohol (<u>1a</u>) (313 mg, 1.17 mmol) was dissolved in a mixture of trimethyl orthoacetate (1000 mg, 8.33 mmol, freshly distilled), acetic acid (5 μ l) and 1,4-dioxane (15 ml, Na dried and distilled). The solution was stirred for 72 h at <u>ca.</u> 95°C and the MeOH that formed was distilled off during the reaction. Dioxane was evaporated, saturated NaHCO₃ solution was added and the mixture was extracted several times with CH₂Cl₂. The crude product (341 mg) was purified by column chromatography (alumina, CH₂Cl₂/MeOH:98/2) to give deformyl-<u>Z</u>-geissoschizine (<u>3a</u>) [291 mg (77%)].

Alternative preparation of deformy1-3-epi-Z-geissoschizine (3b):

Alcohol (<u>1b</u>) (115 mg, 0.43 mmol) was dissolved in a mixture of trimethyl orthoacetate (360 mg, 3.00 mmol, freshly distilled), acetic acid (2 μ l) and 1,4-dioxane (6 ml, Na dried and distilled). The reaction mixture was treated and worked-up as described for deformyl-Z-geissoschizine (<u>3a</u>) (<u>vide supra</u>). The crude product (121 mg) was purified by column chromatography (alumina, CH₂Cl₂/MeOH:98/2) to give deformyl-3-epi-Z-geissoschizine (<u>3b</u>) [106 mg (76%)].

<u>Catalytic hydrogenation of deformyl-Z-geissoschizine (3a):</u>

A. Hydrogenation (MeOH, PtO₂, 1 h) of deformyl-Z-geissoschizine (<u>3a</u>) (105 mg, 0.32 mmol), followed by purification and fractionation by column chromatography (alumina, $CH_2Cl_2/MeOH:99/1$), afforded ester (<u>5a</u>) (32 mg, 30%), ester (<u>5a</u>) (47 mg, 44%), ester (<u>5b</u>) (traces) and ester (<u>6b</u>) (traces).

B. Hydrogenation (MeOH, PtO₂, 3 h) of deformyl-Z-geissoschizine (<u>3a</u>) (115 mg, 0.35 mmol), followed by purification and fractionation as above, afforded ester (<u>5a</u>) (32 mg, 28%), ester (<u>6a</u>) (56 mg, 48%), ester (<u>5b</u>) (traces) and ester (<u>6b</u>) (traces).

C. Hydrogenation (MeOH, PtO₂, 24 h) of deformyl-<u>Z</u>-geissoschizine (<u>3a</u>) (123 mg, 0.38 mmol), followed by purification and fractionation as above, afforded ester (<u>5a</u>) (33 mg, 26%), ester (<u>6a</u>) (61 mg, 49%), ester (<u>5b</u>) (traces) and ester (<u>6b</u>) (traces).

Ester (<u>5a</u>): Amorphous material. Ir: 3480 (NH), 2830, 2760 (Bohlmann bands), 1735 (C=O). ¹H Nmr (200 MHz): 0.92 (3H, t, J=7.4 Hz, -CH₂C<u>H₃</u>, 3.73 (3H, s, -CO₂CH₃), 7.09 (1H, t, J=7.4 Hz, arom. H), 7.16 (1H, t, J=7.4 Hz, arom. H), 7.30 (1H, d, J=7.4 Hz, arom. H), 7.47 (1H, d, J=7.4 Hz, arom. H), 7.92 (1H, br s, NH). Ms: 326 (M^{*}), 325 (100%), 253, 225, 170, 169. HRms found: 326.2013. Calcd for C20H26N2O2: 326.1993.

Ester (<u>6a</u>): Amorphous material. Ir: 3320 (NH), 2830, 2770 (Bohlmann bands), 1730 (C=O). ¹H Nmr (200 MHz): 0.94 (3H, t, J=7.4 Hz, $-CH_2CH_3$), 3.74 (3H, s, $-CO_2CH_3$), 7.10 (1H, t, J=7.4 Hz, arom. H), 7.17 (1H, t, J=7.4 Hz, arom. H), 7.31 (1H, d, J=7.4 Hz, arom. H), 7.47 (1H, d, J=7.4 Hz, arom. H), 7.92 (1H, br s, NH). Ms: 326 (M^{*}), 325 (100 %), 253, 225, 170, 169. HRms found: 326.1983. Calcd for $C_{20}H_{26}N_2O_2$: 326.1993.

<u>Catalytic hydrogenation of deformy1-3-epi-Z-geissoschizine (3b):</u>

A. Hydrogenation (MeOH, PtO₂, 1 h) of deformyl-3-epi-Z-geissoschizine (<u>3b</u>) (120 mg, 0.37 mmol), followed by purification and fractionation as described for deformyl-Z-geissoschizine (<u>3a</u>) (<u>vide supra</u>), afforded ester (<u>5a</u>) (traces), ester (<u>6a</u>) (10 mg, 8%), ester (<u>5b</u>) (traces) and ester (<u>6b</u>) (92 mg, 76%).

B. Hydrogenation (MeOH, PtO₂, 3 h) of deformyl-3-epi-Z-geissoschizine (<u>3b</u>) (106 mg, 0.33 mmol), followed by purification and fractionation as above, afforded ester (<u>5a</u>) (traces), ester (<u>6a</u>) (25 mg, 23%), ester (<u>5b</u>) (traces) and ester (<u>6b</u>) (60 mg, 56%).

C. Hydrogenation (MeOH, PtO₂, 24 h) of deformyl-3-epi-<u>Z</u>-geissoschizine (<u>3b</u>) (122 mg, 0.38 mmol), followed by purification and fractionation as above, afforded ester (<u>5a</u>) (traces), ester (<u>6a</u>) (51 mg, 42%), ester (<u>5b</u>) (traces) and ester (<u>6b</u>) (49 mg, 40%).

Ester (<u>6b</u>): Amorphous material. Ir: 3400 (NH), 1730 (C=O). ¹H Nmr (200 MHz): 0.84 (3H, t, J=7.4 Hz, -CH₂C<u>H₃</u>), 3.73 (3H, s, -CO₂CH₃), 4.09 (1H, m, H-3), 7.11 (1H, t, J=7.4 Hz, arom. H), 7.19 (1H, t, J=7.4 Hz, arom. H), 7.40 (1H, d, J=7.4 Hz, arom. H), 7.49 (1H, d, J=7.4 Hz, arom. H), 7.94 (1H, br s, NH). Ms: 326 (M^{+}), 325 (100%), 253, 225, 170, 169. HRms found: 326.1974. Calcd for $C_{20}H_{26}N_2O_2$: 326.1993.

REFERENCES AND NOTES

- 1. M. Lounasmaa and R. Jokela <u>Tetrahedron</u>, 1990, <u>46</u>, 7873.
- 2. M. Lounasmaa and R. Jokela, <u>Heterocycles</u>, 1990, <u>31</u>, 1351.
- S. J. Rhoads and N. R. Raulins, "Organic Reactions" Vol. 22, ed. W.
 G. Dauben, Wiley, New York, 1975, p. 1.
- G. B. Bennett, <u>Synthesis</u>, 1977, 589. See also, S. Blechert, <u>Synthesis</u>, 1989, 71.
- 5. F. E. Ziegler, <u>Acc. Chem. Res.</u>, 1977, <u>10</u>, 227.
- Called 1,4,5,6,7,12b-hexahydro-3-(1-hydroxyethyl)indolo[2,3-<u>a</u>]quinolizines in the IUPAC nomenclature.
- A. E. Wick, D. Felix, K. Steen, and A. Eschenmoser, <u>Helv. Chim. Acta</u>, 1954, <u>47</u>, 2425.
- 8. J. Le Men and W. Taylor, Experientia, 1965, 21, 508.
- 9. F. E. Ziegler and J. G. Sweeny, <u>Tetrahedron Lett.</u>, 1969, 1097. See also, Refs. 5 and 15.
- W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T.-T. Li, D. J. Faulkner, and M. R. Petersen, <u>J. Am. Chem. Soc.</u>, 1970, <u>92</u> 4463. See also, F. E. Ziegler, and G. B. Bennett, <u>J. Am. Chem. Soc.</u>, 1973, <u>95</u>, 7458, Y. Langlois and P. Potier, <u>Tetrahedron</u>, 1975, <u>31</u>, 419, and M. R. Uskokovic, R. L. Lewis, J. J. Partridge, C. W. Despreaux, and D. L. Pruess, <u>J. Am. Chem. Soc.</u>, 1979, <u>101</u>, 6742.
- M. Lounasmaa and M. Puhakka <u>Acta Chem. Scand. B.</u>, 1978, <u>32</u>, 77. See also, M. Lounasmaa and M. Puhakka <u>Acta Chem. Scand. B.</u>, 1978, <u>32</u>, 216.
- 12. M. Lounasmaa and M. Puhakka Planta Med., 1978, 34, 180.
- M. Lounasmaa, R. Jokela, B. Tirkkonen, and T. Tamminen, <u>Tetrahedron</u>, 1989, <u>45</u>, 7615.

- N. J. Dastoor, A. A. Gorman, and H. Schmid, <u>Helv. Chim. Acta</u>, 1967, <u>50</u>, 213.
- G. Rackur, M. Stahl, M. Walkowiak, and E. Winterfeldt, <u>Chem. Ber.</u>, 1976, <u>109</u>, 3817.
- 16. Hydrolysis of amide (2a) or (2b) followed by esterification (reaction time 20 h) with MeOH saturated with dry HCl gas resulted in epimerization, affording a mixture of esters (3a) and (3b) in about 45% yield.
- 17. L. E. Overman and A. J. Robichaud, <u>J. Am. Chem. Soc.</u>, 1989, <u>111</u>, 300.
- I. Ninomiya, T. Naito, O. Miyata, T. Shinada, E. Winterfeldt, R.
 Freund, and T. Ishida, <u>Heterocycles</u>, 1990, <u>30</u>, 1031.
- R. Brown, M. F. Jones, and M. Wingfield, <u>J. Chem. Soc., Chem. Comm.</u>, 1984, 847.
- M. Ihara, N. Taniguchi, K. Yasui, and K. Fukumoto, <u>J. Chem. Soc.</u>, <u>Perkin Trans. I</u>, 1990, 2771.
- M. Ihara, N. Taniguchi, K. Fukumoto, and T. Kametani, <u>J. Chem. Soc.</u>, <u>Chem. Comm.</u>, 1987, 1438.
- E. Wenkert, K. G. Dave, and F. Haglid, <u>J. Am. Chem. Soc.</u>, 1965, <u>87</u>, 5461.
- E. Wenkert, K. G. Dave, R.G. Lewis, and P.W. Sprague, <u>J. Am. Chem.</u> Soc., 1967, <u>89</u>, 6741.
- S. Takano, K. Masuda, and K. Ogasawara, <u>J. Chem. Soc., Chem. Comm.</u>, 1980, 887.
- T. Kametani, N. Kanya, T. Honda, and M. Ihara, <u>Heterocycles</u>, 1981, <u>16</u>, 1937.
- T. Imanishi, M. Inoue, Y. Wada, and M. Hanaoka <u>Chem. Pharm. Bull.</u>, 1983, <u>31</u>, 1551.

Received, 5th November, 1991