STUDIES IN THE FIELD OF PYRIDAZINE COMPOUNDS, 28.¹ SYNTHESIS OF 5-SUBSTITUTED 6(5H)-1,2,4-TRIAZOLO[4,3-b]PYRIDAZINONES

Judit Kosáry

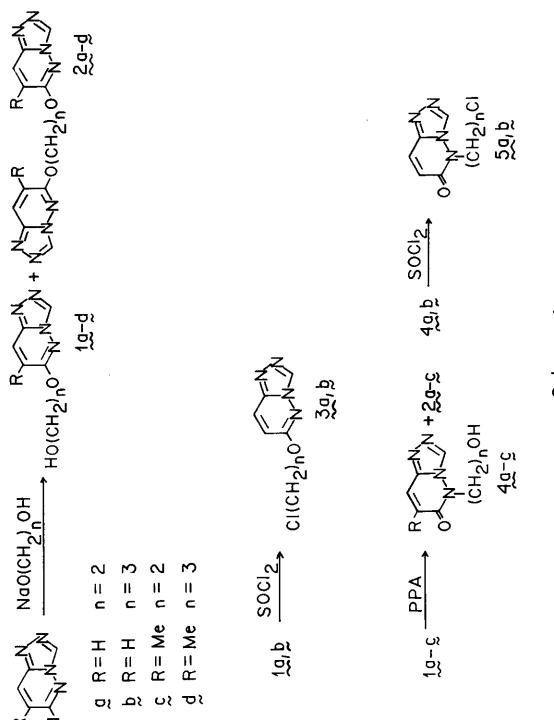
Department of Chemistry and Biochemistry of the University for Horticulture and Food Industry, Budapest, P.O. Box 53, H-1502 Hungary

<u>Abstract</u> - The unknown 5-hydroxy- $6(5\underline{H})-1,2,4$ -triazolo $[4,3-\underline{b}]$ pyridazinones (4) were prepared by rearrangement of 6-hydroxyalkoxy-1,2,4-triazolo $[4,3-\underline{b}]$ pyridazines (1) in polyphosphoric acid. The reaction was accompanied by the formation of bis(triazolopyrydazine) derivatives (2). The products (4) were transformed to chloro derivatives (5).

5-Substituted $6(5\underline{H})-1,2,4$ -triazolo $[4,3-\underline{b}]$ pyridazinones could not be synthesized by direct alkylation of 6-hydroxy-1,2,4-triazolo $[4,3-\underline{b}]$ pyridazine. According to spectral evidence the latter compound exists only in the hydroxy form and therefore its alkylation by conventional methods afforded only <u>0</u>-alkylated derivatives.² It was reported that 1hydroxyethoxyphthalazine³ and 3-hydroxyethoxypyridazine⁴ derivatives in the presence of thionyl choride in chloroform resulted <u>N</u>-chloroethylphthalazinones and pyridazinones by an <u>0-N</u> alkyl rearrangement <u>via</u> an oxazolinium intermediate which was subsequently attacked by the chloride ion. In the case of pyridazine derivatives⁴ the mechanism of the rearrangement was followed by ¹H nmr spectroscopy and an intramolecular process was confirmed.

The synthesis of <u>1</u> was described earlier.⁵ 6-Chloro-1,2,4-triazolo[4,3-<u>b</u>]pyridazine reacted with 1,2-ethane- or 1,3-propanediol in the presence of sodium hydride to give 6-hydroxyalkoxy-1,2,4-triazolo[4,3-<u>b</u>]pyridazines (<u>1</u>) and by-products:the bis(triazolopyridazine) derivatives (<u>2</u>) with recovery of the starting material. However, the formation of <u>2</u> was supressed (1-2 % yields) under diluted conditions.⁵

In avoiding direct alkylation we attempted to apply the above $\underline{0} \rightarrow \underline{N}$ rearrangement to 6hydroxyalkoxy -1,2,4-triazolo[4,3-b]pyridazines (<u>1</u>) but only 6-chloroalkoxy derivatives (3) were isolated. On the basis of Hückel⁶ and CNDO/2⁷ calculations of 1,2,4-triazolo-[4,3-b]pyridazine ring system the electron density of N-5 seems not to be enough to stabilize an oxazolo- or 1,3-oxazinotriazolopyridazinium ion intermediate (n=2 or n=3). It was found that on heating in polyphosphoric acid at 120 °C 1 gave 5-substituted 6(5H)-1,2,4-triazolo[4,3-b]pyridazinones (4) and the bis-derivatives (2) (Scheme 1). On the basis of ir, ¹H nmr and uv data the N- and O-hydroxyalkyl derivatives could be well distinguished. The spectral data of 1b and 4b were compared in detail. Rearrangement of 1b to 4b caused a red shift of the absoption maximum in uv spectra from λ_{max} 272 nm to 279 nm, smaller than that observed with pyridazine derivatives.⁴ Compound (4b) showed a characteristic carbonyl stretching band at 1660 cm⁻¹. ¹H Nmr spectra also supported the constitutions of 1b and 4b: a Het-NCH₂ triplet at 4.35 ppm (4b) and a Het-OCH₂ triplet at 4.50 ppm (1b) were characteristic (Table).


The low yields of $\frac{4}{2}$ were attributed to the formation of the by-products (2). Poor solubility of compounds $\frac{4}{2}$ in organic solvents made their isolation difficult. Compounds (4) were transformed by thionyl chloride to chloro derivatives (5).

The first step of the rearrangement of 6-hydroxyalkoxy-1,2,4-triazolo[4,3-b]pyridazines (1) to 5-hydroxyalky1-6(5H)-1,2,4-triazolo[4,3-b]pyridazinones (4) in polyphosphoric acid seems to involve an usual protonation and dehydratation process⁸ with the formation of an alkyl cation. The stabilization of the alkyl cation might be carried out in two different ways: "a" - a nucleophilic attack by N-5, hydratation and deprotonation to the formation of \underline{A} ; "b" - a nucleophilic attack by N-5, hydratation of $\underline{2}$ and alkanediol (Scheme 2). Heating of the mixture of 1b and 1c in polyphosphoric acid resulted in the formation of only 4b and 4c and no mixed 5-substituted triazolopyridazinones were detected. This crossover reaction suggests that the formation of the compounds(\underline{A}) is an intramolecular reaction.

EXPERIMENTAL

Melting points were determined on a Boethius apparatus. Melting points are not corrected. The following apparatus were used to obtain spectral data: ir: Perkin-Elmer 577; 1 H nmr: Varian EM-390 90 MHz, using TMS as an internal reference; uv: Cary 1180 instrument.

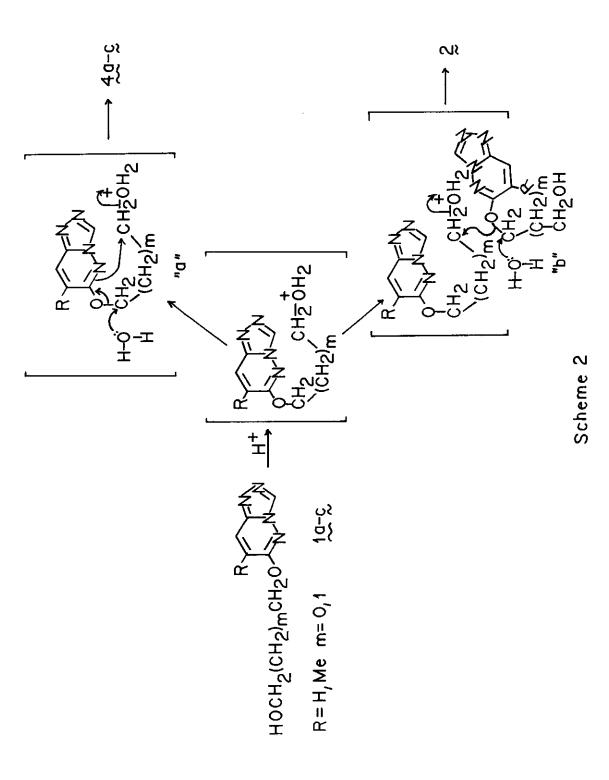
916

Scheme 1

e,	
_	
믚	

1

Characteristic ir (KBr, cm⁻¹), ¹H nmr (CDCl₃, δ ppm) and uv (96 % ethanol) data of compounds (1, 2, 3, 4 and 5)


		•		-			-
Compd ir			1 _H nmr				ΠV
		ArDCH ₂ NCH ₂	2 CH2CH2CH2 CH2OH	CH_2OH CH_2CI	H-3	H-7 H-8 Me	λ_{\max}
		ť(2H) t(2H)) m(2H)	t(2H) t(2H)	s(1H)	ABq(2H) s(3H)	Ē
<u>1a</u> 3235, 3100, 1630, 1550,	350, 860, 840	4.50 - (J=6 Hz)	ı	3.90 - (21) - (21=6, Hz)	9.30	7.05 8.25 - (J=10 Hz)	272
1b 3230, 3100, 1620, 1547, 888	547, 888, 835	4.50	2.20	(J=6 Hz) -	8.90	6.85 8.02 - (J=10 Hz)	272
1c 3227, 3095, 1539, 1502, 889	502, 889, 870	4.45 (J=6 Hz)	I	3.60 - (J=6 Hz) -	9.01	- 8.00 ^a 2.10 (3=0 Hz)	271
ld 3230, 3090, 1600, 1545, 880	545, 880, 840	4.50 - (J=6 Hz)	1.80	3.40 - (J=6 Hz) -	8.90	- 8.10 ^a 2.10 (J=0 Hz)	270
2 <u>a</u> 3123, 1620, 1548, 858,	58, 825	(1	1	8.90 ^C	6.90 ^d 8.01 ^d - (J=10 Hz)	272
20 3100, 1623, 1540, 860,	50, 830	4_75 ^b - (J=0 Hz)	2.00	1 1	в.90 ^с	6.85 ^d 8.05 ^d - (J=10 Hz)	273
<u>2c</u> 3100, 1600, 1570, 85	858, 830	(J=0 Hz) -	ı	I I	9.00 ^c	- 8.00 ^C 2.05 ^e (J=0 Hz)	272
<u>2</u> d 3110, 1630, 1600, 860,	60, 840	4 80 ^b - (J=0 Hz)	I.90	I I	в.90 ^с	- 7.90 ^C 2.10 ^e (J=0 Hz)	270
ža 3136, 1618, 1547, 88	887, 831	(J=5 ⁴ ,65 - (J=5 ⁴)	1	- 3.90 (J=5 Hz)	8.90 (z	6,90 8,05 - (3=10 Hz)	273
<u>3</u> b 3126, 1622, 1558, 1543,	543, 854, 827	4.52 - (J=5 Hz) -	2.25	- 3,73 (J=5 Hz)	8.95 (<u>1</u>	6.80 8.02 - (J=10 Hz)	273
4g 3230, 3095, 1657, 1625, 1530, 850	525, 1530, 850	- 4.25 (J=7 Hz)	- (z	4.00 - (J=7 Hz)	9.30	7.01 8.15 - (3=10 Hz)	279
4b 3235, 3090, 1660, 1610, 1520,	61 0, 1 520, 840	- 4.35 (J=7 Hz)	z) 1.80	3.55 - (J=6 Hz) -	9.40	6.75 8.10 - (J=10 Hz)	279
4 <u>6</u> 3225, 3090, 1656, 1615,	615, 1530, 850	- 4,45 (J=7 Hz)	- (z	- (3:60 - (J=7 Hz)	9.20	- 8.00 ^a 2.05 (J=0 Hz)	279
<u>5a</u> 3130, 1665, 1610, 1540, 860,	540, 860, 825	- (3=6 Hz)	- (z	- 4.10 (J=6 Hz)	8.90 z)	6.95 8.10 - (J=10 Hz)	280
<u>5</u> b 3126, 1660, 1550, 865,	55, 83 0	- (3=6 Hz)	z) 1.95	- 3,83 H; (J=5 H;	9.00 (z	6;90 8.02 - (J=10 Hz) -	279

.

^as(lH); ^bs(4H); ^cs(2H); ^dABq(4H); ^es(6H)

.

HETEROCYCLES, Vol. 34, No. 5, 1992

Recrystallizations were carried out using ethanol.

Preparation of compounds 1

To a suspension of NaH (0.5 g, 50 % dispersion in mineral oil, 0.01 mol) in 1,2-ethane- or 1,3-propanediol (10 ml), 6-chloro-1,2,4-triazolo $[4,3-\underline{b}]$ pyridazine (1.54 g, 0.01 mol) was added in small portions at 5 $^{\circ}$ C. The reaction mixture was stirred for 24 h at room temperature. The precipitate was filtered off. Chromatography on silica gel (eluant ethyl acetate) gave 1 along with 1-2 % of 2.

Compound la: mp 172 ^OC; yield 54 %. Anal. Calcd for $C_7H_8N_4O_2$: C, 46.66; H, 4,48; N, 31.10. Found: C, 46.60; H, 4.50; N, 31.10.

Compound <u>lb</u>: mp 135 ^OC; yield 72 %. Anal. Calcd for $C_8H_{10}N_4O_2$; C, 49.48; H, 5.19; N, 28.85. Found: C, 49.36; H, 5.22; N, 28.77.

Compound 1c: mp 180 $^{\circ}$ C; yield 64 %. Anal. Calcd for $C_8H_{10}N_4O_2$; C, 49.48; H, 5.19; N, 28.85. Found: C, 49.29; H, 5.30; N, 28.80.

Compound 1d: mp 152 o C; yield 70 %. Anal. Calcd for $C_{9}H_{12}N_{4}O_{2}$; C, 51.91; H, 5.81; N, 26.91. Found: C, 51.84; H, 5.80; N, 26.99.

1 (0.01 mol) was heated at 120 $^{\circ}$ C in polyphosphoric acid (9 g) for 1 h. The reaction mixture was poured onto crushed ice, neutralized with solid KHCO₃ and the aqueous solution was extracted with chloroform. Evaporation and chromatography of the solid residue on silica gel (eluant methanol and ethyl acetate 1:9) gave 2 and 4. Compound 2a: mp 254 $^{\circ}$ C; yield 21 %. Anal. Calcd for $C_{12}H_{10}N_8O_2$: C, 48.32; H, 3.38; N, 37.57. Found: C, 48.30; H, 3.42; N, 37.70. Compound 2b: mp 197 $^{\circ}$ C; yield 19 %. Anal. Calcd for $C_{13}H_{12}N_8O_2$: C, 50.00; H, 3.87; N, 35.88. Found: C, 49.97; H, 3.89; N, 35.75. Compound 2c: mp 199 $^{\circ}$ C; yield 20 %. Anal. Calcd for $C_{14}H_{14}N_8O_2$: C, 51.53; H, 4.32; N, 34.34. Found: C, 51.37; H, 4.30; N, 34.40. Compound 2d: mp 176 $^{\circ}$ C; yield 5 %. Anal. Calcd for $C_{15}H_{16}N_8O_2$: C, 52.93; H, 4.74; N, 32.93. Found: C, 52.88; H, 4.70; N, 33.07. Compound 4a: mp 186 $^{\circ}$ C; yield 15 %. Anal. Calcd for $C_{7}H_8N_4O_2$: C, 46.66; H, 4.48; N, 31.10. Found: C, 46.62; H, 4.50; N, 31.15.

Compound 4b: mp 166 0 C; yield 15 %. Anal. Calcd for $C_{8}H_{10}N_{4}O_{2}$: C, 49.48; H, 5.19; N, 28.85.

Found: C, 49.40; H, 5.25; N, 29.01.

Compound 4c: mp 180 °C; yield 11 %. Anal. Calcd for $C_8H_{10}N_4O_2$: C, 49.48; H, 5.19; N, 28.85. Found: C, 49.34; H, 5.12; N, 29.10.

Preparation of compounds 3 and 5

To a solution of $\underline{12}, \underline{5}$ or $\underline{43}, \underline{5}$ (5 mmol) in chloroform (50 ml), thionyl chloride (3.06 g, 0.026 mol) was added dropwise at 10 $^{\circ}$ C. The reaction mixture was refluxed for 1 h then poured onto crushed ice, neutralized by 10 % Na₂CO₃ and extracted with chloroform. The solvent was evaporated <u>in vacuo</u> and the residue was triturated with ether.

Compound <u>3a</u>: mp 118 ^oC; yield 73 %. Anal. Calcd for C₇H₇N₄DCl: C, 42.33; H, 3.55; N, 28.21. Found: C, 42.20; H, 3.63; N, 28.00.

Compound <u>35</u>: mp 97 O C; yield 57 %. Anal. Calcd for $C_{8}H_{9}N_{4}OC1$: C, 45.19; H, 4.27; N, 26.35. Found: C, 45.01; H, 4,35; N, 26.32.

Compound 5a: mp 128 O C: yield 65 %. Anal. Calcd for C₇H₇N₄OCl: C, 42.33; H, 3.55; N, 28.21. Found: C, 42.20; H, 3.62; N, 28.24.

Compound 5b: mp 104 ^OC; yield 59 %. Anal. Calcd for C₈H₉N₄OCl: C, 45.19; H, 4.27; N, 26.35. Found: C, 45.10; H, 4.31; N, 26.30.

ACKNOWLEDGEMENT

Thanks are due to Dr. G. Jerkovich and Dr. A. Szabó for recording the spectra and to Mrs. E. Németh for technical assistance.

- REFERENCES
- Part 27.: E. Kasztreiner, K. Czakó, J. Kosáry, E. Diesler, G. Rabloczky, L. Jaszlits and A. Jednákovits, <u>Eur. J. Med. Chem. Chim. Ther.</u>, 1991, <u>26</u>, 739.
- 2. S. Linholter and R. Rosenorn, Acta Chem. Scand., 1962, 16, 2389.

3. B. G. Pring and C.-G. Swahn, Acta Chem. Scand., 1973, 27, 1891.

- 4. P. Mátyus, N. Makk, E. Kasztreiner and G. Jerkovich, <u>Heterocycles</u>, 1989, 22, 67.
- 5. J. Kosáry, Magyar Kém. Folyóirat, 1980, 86, 282 (Chem. Abstr., 1981, 94, 47247s).
- 6. M. Japelj, B. Stanovnik, and M. Tisler, J. Heterocycl. Chem., 1969, 6, 558.
- 7. J. Kosáry and Z. Gabányi, Chem. Ber., 1983, 116, 3513.
- 8. R. K. Hill and O. T. Chortyk, J. Am. Chem. Soc., 1962, 84, 1064.

Received, 5th November, 1991