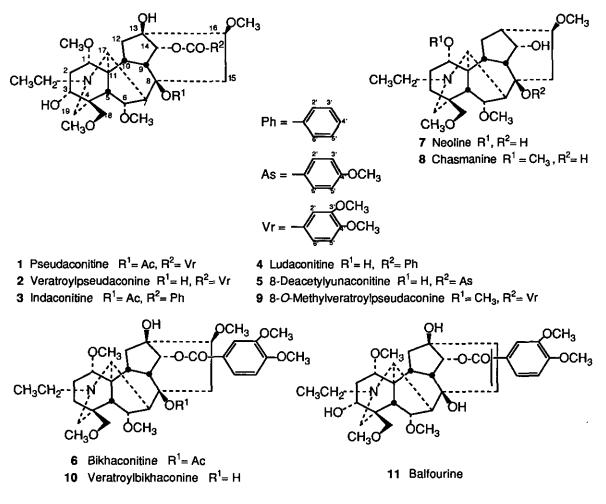
ALKALOIDS OF ACONITUM BALFOURII STAPF.

Khadga S. Khetwal, Balawant S. Joshi, Haridutt K. Desai, and S. William Pelletier*

Institute for Natural Products Research and Department of Chemistry, The University of Georgia, Athens, Georgia 30602, U.S.A.

<u>Abstract</u> – Three new norditerpenoid alkaloids, 8-O-methylveratroylpseudaconine (9), veratroylbikhaconine (10), and balfourine (11), have been isolated from <u>Aconitum balfourii</u>, together with eight known alkaloids, pseudaconitine, veratroylpseudaconine, indaconitine, ludaconitine, 8-deacetylyunaconitine, bikhaconitine, neoline, and chasmanine. The new structures were derived from physical and spectroscopic data and chemical correlations with alkaloids of established structures.


The roots of <u>Aconitum balfourii</u> Stapf. are reported to be highly poisonous and are found in the subalpine and alpine Himalayas from Garhwal to Nepal between 7500 and 14,000 ft.¹ There is one previous publication on the chemical investigation of this plant in which, the isolation of pseudaconitine has been reported.² This alkaloid was first isolated in 1877 from the roots of <u>Aconitum</u> <u>ferox</u> Wall.³ and after a series of investigations by Marion and other workers, the structure (1) for pseudaconitine was established in 1963 by Tsuda and Marion.⁴

In the present investigation, a detailed study of the basic fraction of the roots of <u>A</u>. <u>balfouril</u> has resulted in the isolation and structure elucidation of three new and eight previously known norditerpenoid alkaloids. Isolation of the pure alkaloids was carried out by vacuum liquid chromatography⁵ and by centrifugally accelerated, radial, thin layer chromatography on alumina.⁶ The norditerpenoid alkaloids of known structures are: a) pseudaconitine^{7,8} (1), b) veratroylpseudaconine^{7,8} (2), c) indaconitine^{7,8,9} (3), d) ludaconitine¹⁰ (4), e) 8-deacetylyunaconitine¹¹ (5), f) bikhaconitine¹² (6), g) neoline¹³ (7) and h) chasmanine¹³ (8). The three new alkaloids isolated from this plant are: i) 8-*O*-methylveratroylpseudaconine (9), j) veratroylbikhaconine (10) and k) balfourine (11).

The identification of the alkaloids a to h is based on their physical constants, and infrared, mass, proton and carbon-13 nmr spectral data. Comparison of tlc, infrared and ¹³C nmr spectral data with those of authentic samples confirmed their identity. The ¹³C nmr spectral data for the alkaloids (1 – 11) are given in Table 1. The assignments for certain of the carbon atoms given in the literature¹⁴ have been revised and the revised values are indicated by an asterisk. The ¹³C nmr data for luda-conitine (4) are new and were not recorded in the literature cited.¹⁰ When C-8 carries an acetoxyl group, this carbon appears downfield by ~9–10 ppm when compared with the alkaloid having a C-8 hydroxyl group. Also, the adjacent carbons C-7, C-9 and C-15 are shifted upfield by about 3, 5 and 2–3 ppm, respectively, when C-8 bears an acetoxyl group.

8-O-Methylveratroylpseudaconine (9); $C_{35}H_{51}NO_{11}$; ms: m/z 661 (M+, 0.5%), 630 (M+ -OCH₃, 100) was obtained as an amorphous compound. The ¹H nmr spectrum showed δ : 1.15 (3H, t, J = 7 Hz,

N-CH₂C<u>H</u>₃), 3.00, 3.25, 3.26, 3.28, 3.51 (each 3H, s, aliphatic OCH₃), 3.91, 3.92 (each 3H, s, Ar-OCH₃), 4.85 (1H, d, J = 4.5 Hz, C(14)- β -H), 6.88 (1H, d, J = 9 Hz, H-5'), 7.60 (1H, d, J = 2 Hz, H-2'), 7.70 (1H, dd, J = 9, 2 Hz, H-6'). The C(8)-methoxyl group is shielded due to the ring current of the 14- α -veratroyl group and appears at δ 3.00. Also, in the ¹³C nmr spectrum, the C(8)-methoxyl carbon is observed upfield (from the usual methoxyl position) at 48.7 ppm as in the case of other alkaloids having a methoxyl group at the C(8) position.^{15,16}

A crystalline compound, mp 90–92°C, isolated by chromatographic separation, $[\alpha]_D$ +46.5°, was identified as veratroylbikhaconine (**10**), C₃₄H₄₉NO₁₀, ms: m/z 631 (M⁺, 2.5%), 600 (M⁺ -OCH₃, 100); ¹H nmr δ : 1.09 (3H, t, J = 7.5 Hz, N-CH₂CH₃), 3.25, 3.26, 3.29, 3.39 (each 3H, s, OCH₃), 3.92, 3.93 (each 3H, s, Ar-OCH₃), 5.12 (1H, d, J = 4.5 Hz, C(14)-β-H), 6.88 (1H, d, J = 10 Hz, H-5'), 7.58 (1H, d, J = 2 Hz, H-2'), 7.65 (1H, dd, J = 10, 2 Hz, H-6'). The structural assignment was confirmed by partial hydrolysis of bikhaconitine in refluxing dioxane-water (1:1) for 3 days to afford **10**, identical (tlc, ir) with the alkaloid isolated from <u>A. balfourii</u>. The sluggish hydrolysis is probably due to steric hindrance of the veratroyl group. In comparison, the 8-acetoxyl group in aconitine possessing a benzoate group at C(14), is hydrolyzed in 1 h.¹⁷

Table 1. ¹³C Nmr Chemical Shifts and assignments for Pseudaconitine (1), Veratroylpseudaconine (2), Indaconitine (3), Ludaconitine (4), 8-Deacetylyunaconitine (5), Bikhaconitine (6), Neoline (7), Chasmanine (8), 8-O-Methylveratroylpseudaconine (9), Veratroylbikhaconine (10), and Balfourine (11).

Carbon	1	2	39	4	5	6	9	10	11	7	8
C-1	83.6d	83.2d	83.5d	83.1d	83.1*	83.8d	83.7d	83.3d	82.5d	72.2d	86.2d
C-2	35.0t	35.7t	35.2t	35.3t	35.9t	26.3t	35.4t	35.4t	34.0t	29.1t	26.0t
C-3	71.6d*	71.9d	71.3d	72.1d		35.1t	71.4d		71.9d	29.9t ^a	35.3t
C-4	43.1s	43.2s	43.2s	43.3s	43.3s	39.1s	43.1s	39.3s	43.4s	38.1s	39.4s
C-5	48.7d	47.8d*	48.8d	48.0d	47.40	l 49.5d	48.1d	49.6d	46.9d	44.9d	48.6d
C-6	82.1d ^a	82.4d ^a	82.3d	82.5d	82.6 ^a	85.0ď	' 82.0d	85.4d	81.6d	83.1d	82.3d
C-7	44.6d*	47.8d*	48.8d	47.9d	48.1*	45.0d	45.6d	48.3d	48.0d	52.1d	52.6d
C-8	85.4s	73.8s	85.6s	73.8s	73.8	85.5s'	78.6s	76.1s	73.8s	74.2s	72.5s
C-9	47.0d	53.4d	47.3d	53.4d	53.3	49.5d	45.3d	53.7d	48.8d	48.3d	50.2d
C-10	40.7d	41.9d*	40.8d	42.0d	42.0	40.9d	41.2d	42.2d		44.1d*	
C-11	50.3s	50.2s	50.2s	50.3s	50.3	50.2s	50.8s	50.3s	50.2s	49.5s	50.3s
C-12	33.2t	33.6t	33.7t	33.6t	33.6*	35.7t	32.4t	36.4t	40.6t	29.8t ^a	28.3t
C-13	74.7s	75.8s	74.7s	76.0s	76.0	74.9s	75.2s	73.8s	76.0s	40.2d*	37.8d*
C-14	78.5d	79.8d	78.8d	80.2d	79.9	78.6ď			80.3d	76.1d	75.6d
C-15	39.8t	42.3t	39.5t	42.3t	42.2	39.5t	36.9t	42.1t	134.7d ^a		38.7t
C-16	83.0d ^a		83.2d	82.6d	82.5ª		82.7d		130.1d ^a		82.0d
C-17	61.9d	61.9d	61.7d	61.9d	61.9	62.0d	61.7d	62.3d	62.4d		62.7d
C-18	77.0t*	77.4t*	76.7d	77.5t	77.2	80.3t	76.9t	80.6t	77.2t	80.3t	80.8t
C-19	48.9t	48.9t	48.8t	49.0t	49.0*	53.6t	48.8t	53.8t	49.1t	57.0t	53.8t
N-ÇH₂	47.7t	47.4t*	47.3t	47.4t	47.9	49.1t	48.3t	49.3t	47.5t	48.3t	49.3t
ĆНз	13.2q	13.5q	13.3q	13.6q	13.6	13.3q	12.8q	13.6q	13.4q	13.1q	13.8q
C-1'	55.9q	55.8q	55.9q	56.1q	56.1	55.8q	56.0q	56.4q	56.0q	-	56.2q
C-6'	57.9q	57.5q	57.8q	57.6q	58.4	57.8q	58.7q	57.6q	57.5q	57.9q	57.3q
C-8'	-	-			-	-	48.7q	-	-	-	-
C-16'	58.8q	58.4q	58.7q	58.3q	57.6	58.1q	58.9q		-	56.3q	56.4q
C-18'	59.2q	59.1q	59.1q	59.2q	59.2	59.0q	59.1q	59.2q	59.2q	59.2q	59.3q
ço	170.0s	-	169.8s	·	-	169.9s	-		-	-	-
сн₃	21.6q	-	21.5q		_	21.7q	_	-	-	-	-
CO	166.0s	166.3s						166.5s		-	-
1 1'	122.6s	122.5s				123.0s	122.9s	122.5s	121.6s	-	-
Ar 2'	110.4d*	110.3d*					110.2d	110.4d	110.4d	-	-
		148.6s*						148.6s		-	-
4'	153.0s*	153.0s*	133.2d	133.2d	163.6	153.0s	152.8s	153.1s	153.1s	-	~
		112.2d*	128.5d*	128.6d	113.8					-	-
		123.7d*	129.7d*	129.7d				123.7d	123.6d	-	-
Ar-OCH ₃		55.9q	-	-	55.5	56.2q	55.8q	56.1q	-		
Ar-OCH ₃	<u>56.0q</u>	55.9q		-	-	56.0q	55.8q	56.1q	-	-	
aThese v	aluge ma	v ho into	rehanded	lin onv	vortion	column					

^aThese values may be interchanged in any vertical column.

The third new alkaloid designated as balfourine has been identified as 16-demethoxy-15,16-dehydroveratroylpseudaconine (**11**). This amorphous alkaloid, $C_{33}H_{45}NO_{10}$, showed ms: m/z 615 (M⁺, 3%), 584 (M⁺ -OCH₃, 100); ¹H nmr δ : 1.06 (3H, t, J = 8 Hz, N-CH₂C<u>H</u>₃), 3.24 (3H, s, OCH₃), 3.32 (6H, s, 2-OCH₃), 3.92, 3.94 (each 3H, s, Ar-OCH₃), 4.22 (1H, d, J = 4.5 Hz, C(14)- β -H), 5.63, 5.90 (each 1H, dd, J = 5 Hz, CH=CH), 6.88 (1H, d, J = 9.5 Hz, H-5'), 7.48 (1H, d, J = 1.5 Hz, H-2'), 7.56 (1H, dd, J = 9.5, 1.5 Hz, H-6'). Falaconitine obtained by the pyrolysis of pseudaconitine (1), was treated with *p*-toluenesulfonic acid in benzene at room temperature for 4 days to afford balfourine (11), in 90% yield, identical with the alkaloid isolated from <u>A</u>. <u>balfourii</u>. Balfourine (11) represents the first naturally occurring norditerpenoid alkaloid having an isopyro- structure.

ACKNOWLEDGEMENT

We thank Mr. Courtney Pape for the mass spectra. We acknowledge with thanks a grant from the National Science Foundation (INT-8905629) in support of this work.

REFERENCES

- R. N. Chopra, S. L. Nayar, and I. C. Chopra, <u>Glossary of Indian Medicinal Plants</u>, CSIR Publications, New Delhi, p. 4, 1953.
- 2. T. A. Henry and T. M. Sharp, <u>J</u>. <u>Chem. Soc.</u>, 1928, 1105.
- 3. C. R. A. Wright and A. P. Luff, J. Chem. Soc., 1877, 31, 143; ibid., 1878, 33, 151.
- 4. Y. Tsuda and L. Marion, Can. J. Chem., 1963, 41, 1485.
- 5. S. W. Pelletier, H. P. Chokshi, and H. K. Desai, J. Nat. Prod., 1986, 49, 892.
- 6. H. K. Desai, B. S. Joshi, A. M. Panu, and S. W. Pelletier, J. Chrom., 1985, 322, 223.
- 7. S. W. Pelletier, N. V. Mody, R. S. Sawhney, and J. Bhattacharyya, Heterocycles, 1977, 7, 327.
- 8. S. W. Pelletier, N. V. Mody, and H. S. Puri, Phytochemistry, 1977, 16, 623.
- 9. H. P. Chokshi, Studies of Diterpenoid Alkaloids, Ph.D. Dissertation, University of Georgia, Athens, Georgia, 1985.
- 10. D. H. Chen and W. L. Sung, Chinese Traditional and Herbal Drugs, 1982, 13, 8.
- 11. S. Y. Chen and Y. Q. Liu, Acta Botanica Yunnanica, 1982, 6, 338.
- 12. H. K. Desai, B. S. Joshi, and S. W. Pelletier, Heterocycles, 1986, 24, 1061.
- 13. S. W. Pelletier and Z. Djarmati, J. Amer. Chem. Soc., 1976, 98, 2626.
- S. W. Pelletier, N. V. Mody, B. S. Joshi, and L. C. Schramm, "¹³C and Proton Nmr Shift Assignments and Physical Constants of C₁₉-Diterpenoid Alkaloids" in <u>Alkaloids: Chemical and Biological Perspectives</u>, vol. 2, ed. by S. W. Pelletier, John Wiley and Sons, New York, 1984, p. 205.
- 15. S. W. Pelletier, S. K. Srivastava, B. S. Joshi, and J. D. Olsen, Heterocycles, 1985, 23, 331.
- 16. H. K. Desai, B. S. Joshi, S. A. Ross, and S. W. Pelletier, J. Nat. Prod., 1989, 52, 720.
- 17. S. A. Ross and S. W. Pelletier, <u>Heterocycles</u>, 1991, 32, 1307.

Received, 11th December, 1991