A NEW SYNTHESIS OF 7,12-DIHYDRO-12-PHENYL-5<u>H</u>-6,12-METHANODIBENZ[<u>c,f</u>]-AZOCINES VIA N-BENZYL-1,2,3,4-TETRAHYDRO-4-PHENYLISOQUINOLIN-4-OLS

Masaru Kihara,* Minoru Kashimoto, Yoshimaro Kobayashi, and Yoshimitsu Nagao

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770, Japan

Abstracts- 7,12-Dihydro-12-phenyl-5 \underline{H} -6,12-methanodibenz($\underline{c},\underline{f}$) azocine derivatives were prepared from N-benzyl-1,2,3,4-tetrahydro-4-phenyl-isoquinolin-4-ols by an intramolecular Friedel-Crafts reaction.

We have recently reported the convenient synthesis of 1,2,3,4-tetrahydro-<u>N</u>-methyl-4phenylisoquinolin-4-ol(PI-OH)(la) and its derivatives by an intramolecular Barbier reaction with BuLi^{1,2} and by an insertion reaction with zerovalent nickel^{1,3} of phenacylamine derivatives. The isoquinolin-4-ol(la) was also found to have a strong and selective noradrenaline potentiating activity.^{4,5} In order to study the structureactivity relationships of PI-OH analogues, the synthesis of a secondary amine(lb) was attempted by debenzylation of an <u>N</u>-benzylisoquinolin-4-ol(2a) with AlCl₃ according to the method reported by Murakami.⁶ The structure of the product was found to be not lb but 7,12-dihydro-12-phenyl-5<u>H</u>-6,12-methanodibenz[<u>c,f</u>] azocine(3a). This result indicates that the intramolecular Friedel-Crafts reaction in the treatment of **2a** with AlCl₃ predominates over the <u>N</u>-debenzylation reaction because of the reactive hydroxy group at a double benzylic position. Although the preparation of dibenz[<u>c,f</u>]azocine(3) <u>via N,N-</u> dibenzylaminoacetaldehyde dialkyl acetals was reported by Takayama,⁷ the reaction of isoquinolin-4-ols(2) with acids should offer a new method for the preparation of **3**.

747

This paper describes a new synthesis of dibenz ($\underline{c}, \underline{f}$) azocine derivatives(3) via N-benzyltetrahydroisoquinolin-4-ols(2) by an intramolecular Friedel-Crafts reaction.

The key intermediates(2a-h) were prepared by both methods using an intramolecular Barbier reaction with $BuLi^{1,2}$ and using an insertion reaction with zerovalent nickel^{1,3} from <u>N-benzyl-N-(2-iodobenzyl)phenacylamines(4a-h)</u>, which were obtained from the corresponding phenacyl bromides(5a-g) and <u>N-benzyl-2-iodobenzylamines(6a,b)</u> in good yields(Scheme 1 and Table III). The reaction of phenacylamines(4a-h) with BuLi gave higher yields of isoquinolin-4-ols(2a-h) than those with zerovalent nickel(Table I). These results are consistent with those of the reaction of <u>N</u>-methylphenacylamine derivatives with BuLi and zerovalent nickel reported in the previous papers.^{1,3}

Isoquinolin-4-ol(2a) was treated with $AlCl_3$ in benzene at room temperature to give a cyclization product(3a) in 83% yield. Reaction of other isoquinolin-4-ols(2e-h) with $AlCl_3$ also gave good yields of the dibenz[c,f]azocines(3e-h)(Table II). The debenzylation products of 2a and 2e-h were not isolated in these reactions. The reaction of a methoxy derivative of isoquinolin-4-ol(2a) with $AlCl_3$ was predicted to give a cleaved product of the methyl ether. In fact, the reaction of 2d with $AlCl_3$ gave only a poor yield of 3d

					Elemen	ital An	alysis
No	Yield(%)		mp(°C)	Formula	Calcd (Found)		
	BuLi	Ni(0)			С	H	N
2c	74	37	181-182	C24H25NO3+HC1	69.98	6.36	3.40
					(69.74	6.56	3.36)
2d	71	51	182-184	C ₂₄ H ₂₅ NO3+HC1	69.98	6.36	3.40
					(70.14	6.39	3.39)
2e	80	31	205-209	C ₂₂ H ₂₀ NOF-HCT	71.44	5.72	3.89
					(71.20	5.39	3.97)
2f	73	15	215-219	С ₂₂ Н ₂₀ NOC1 •HC1	68.40	5.48	3.63
					(68.36	5.42	3.58)
2g	77	32	201-203	C23H23NO-HC1	75.50	6.61	3.83
				20 20	(75.14	6.67	3.72)
2h	86	33	195-198	C ₂₄ H ₂₅ NO+HC1+1/4H ₂ 0	74.98	6.95	3.64
					(75.20	6.84	3.53)

Table I. Yields and Physical Data for Isoquinolin-4-ols(2c-h)^a

a. Ref. 1 for 2a,b.

Table II. Yields and Physical Data for Dibenz[c,f]azocines(3a-h)

						Elemer	ntal Ar	alysis	
No	Yield (%)			mp(°C)	Formula	Calcd (Found)			
	A1C1 ₃	85%H2S04	CF3S03H			С	H	N	
3a	83	78		140-145	C ₂₂ H ₁₉ N	88.85	6.44	4.71	
						(89.06	6.45	4.63)	
3b		21	57	165-166.5	с ₂₃ н ₂₁ NO+HC1	70.67	6.45	3.58	
					-3/2H ₂ 0	(70.84	6.32	3.31)	
3c		96		170-175	C24H23NO2+HC1	72.08	6.22	3.50	
					•1/3H_0	(71.98	6.10	3.46)	
3d	4	43		212-214	C24H23NO2+HC1	72.08	6.22	3.50	
					·1/3H_0	(71.96	5.83	3.60)	
3e	80			199-205	C ₂₂ H ₁₈ NF+HC1	75.10	5.44	3.98	
					· ·	(74.86	5.16	3.97)	
3f	82			131-132	C ₂₂ H ₁₈ NC1	79.63	5.47	4.22	
					22 10	(79.71	5.46	4.16)	
3g	47			190-191.5	C ₂₃ H ₂₁ N-HC1	79.41	6.37	4.03	
					20 2.	(79.08	6.38	4.05)	
3h	57			167-169	C ₂₄ H ₂₃ N-HC1	77.71	6.79	3.78	
					•1/3H20	(77.87	6.70	3.60)	
					-				

with ambiguous products. Thus, the isoquinolin-4-ol(2a) was tried to treat with 85% $H_2SO_4^8$ to give a desired product(3a) in 78% yield. The treatment of the methoxy compounds (2b-d) in the same way as 2a afforded methoxyazocines(3b-c). As the yield of 3b from 2b was low, 2b was cyclized with CF_3SO_3H and the azocine(3b) was obtained in 57% yield. The structures of the dibenz[c,f] azocines(3a-h) were confirmd by their physical properties (Table II) and ¹H-nmr spectra(Table IV). In the ¹H-nmr spectra of 3a-c and 3e-h, the methylene protons at C-5 and C-7 showed same chemical shifts but the protons of C-5 in 3d were in higher field than those of C-7, which were assigned by determination of its 2D-NOESY spectrum.

EXPERIMENTAL

All melting points are given as uncorrected values. Ir spectra were taken with a Perkin-Elmer 1720 infrared fourier transform spectrophotometer and are given in cm⁻¹. Highresolution mass spectra were recorded on a JEOL JMS-D 300 spectrometer. ¹H- And ¹³C-nmr spectra were recorded on a JEOL JNM-FX 200 spectrometer in CDCl₃ with tetramethylsilane as a standard and are given in δ values.

<u>4-Methylphenacyl Bromide(5f)</u> A solution of benzyltrimethylammonium tribromide⁹(5.13 g, 13.2 mmol) in CH_2Cl_2 -MeOH(5:2) (50 ml) was added to a solution of 4'-methylacetophenone (1.60 g, 11.94 mmol) in CH_2Cl_2 -MeOH(5:2) (20 ml) and was stirred for 2 h at room temperature. The mixture was evaporated in vacuo and $H_2O(50 \text{ ml})$ was added to the residue. The mixture was extracted with ether(50 ml x 3). The extract was washed with H_2O , dried over MgSO₄ and evaporated to give 5f as colorless crystals(2.49 g, 98%), mp 41-44°C. ¹H-Nmr:7.86 (2H,d,J=8 Hz, H-2 and H-6), 7.26(2H,d,J=8 Hz,H-3 and H-5), 4.42(2H,s,CH₂) 2.40 (3H,s,CH₃). Ir(KBr):1694 (C=0). Ms(m/z)(M⁺):Calcd for $C_9H_9OBr:211.9838$. Found:211.9861. Phenacyl bromide(5g) was prepared in the same way as 5f. Phenacyl bromides(5a,b and 5e) were commercially available, and 5c³ and 5d¹ have been reported by us.

<u>4-Ethylphenacyl Bromide(5g)</u> A colorless oil(99%). ¹H-Nmr: 7.90(2H,d,J=8.5 Hz,H-2 and H-6), 7.30(2H,d,J=8.5 Hz,H-3 and H-5), 4.43(2H,s,CH₂Br), 2.71(2H,q,J=7.5 Hz,CH₂CH₃), 1.26 (3H,t,J=7.5 Hz,CH₂CH₃). Ir(KBr): 1678(C=0). Ms(m/z)(M⁺): Calcd for $C_{10}H_{11}OBr$: 225.9992.

Found: 225.9982.

<u>N-Benzyl-2-iodo-4,5-dimethoxybenzylamine(6b)</u> 2-Iodo-4,5-dimethoxybenzaldehyde(5.85 g, 20.0 mmol) and 6.5N HCl-MeOH(6 ml, 39 mmol) were added to a solution of benzylamine(12.9 g, 120 mmol) in absolute MeOH(25 ml) and NaBH₃CN(0.88 g, 13.5 mmol) was added. The mixture was stirred for 48 h at room temperature. The precipitates formed were filtered and the filtrate was acidified with conc. HCl and evaporated. H₂O(100 ml) was added to the residue and the mixture was washed with ether, basified with powdered KOH and extracted with CHCl₃. The extract was dried over MgSO₄ and evaporated to give a crude product. This was purified by flash chromatography on SiO₂ with CHCl₃-MeOH(10:1) to give **6a** as a pale yellow oil(5.32 g, 69%), which was converted to the hydrochloride as colorless needles (from MeOH), mp 176-177.5 °C. ¹H-Nmr(free base):7.22(1H,s,H-3), 6.94(1H,s,H-6), 3.85 and 3.86(each 3H,s, 2xOCH₃), 3.77 and 3.81(each 2H,s,2xCH₂),1.74(1H, br s,NH). <u>Anal</u>.Calcd for C₁₆H₁₈NI·HCl:C,45.79;H,4.56; N,3.34. Found:C,45.64;H,4.58;N, 3.28.

The benzylamine(6a) was reported in our previous paper.¹

<u>General Procedure for Preparation of N-Benzyl-N-(2-iodobenzyl)phenacylamines</u> This is exemplified by the preparation of 4c. A solution of the benzylamine(6a)(1.640 g, 5.11 mmol) in dioxane(15 ml) was added to a solution of phenacyl bromide(5c)(686 mg, 2.64 mmol) in dioxane(15 ml). The mixture was stirred for 5 h at room temperature. The colorless precipitates(866 mg) of the hydrobromide of 6a formed were filtered and the filtrate was evaporated to give a crude oil(1.513 g). This was purified by flash chromatography on SiO₂ with CHCl₃-benzene(2:1) to give 4c as an oil(1.204 g, 91%). The spectral data for 4c thus obtained are shown in Table III.

Other N-benzylphenacylamines(4d-h) were prepared in the same way as 4c(Table III).

General Procedure for Reaction of N-Benzyl-N-(2-iodobenzyl)phenacylamines with BuLi

This is exemplified by the reaction of 4c with BuLi. BuLi(1.6 M sol. in hexane, 0.41 ml, 0.65 mmol) was added to a solution of the phenacylamine(4c)(252 mg, 0.50 mmol) in dry THF (4 ml) by a syringe at -78° C under N₂ and the mixture was stirred for 10 min at -78° C. H₂0(20 ml) was added and the mixture was extracted with ether(20 ml x 3). The extract was dried over MgSO₄ and evaporated to give an oil(195 mg). This was subjected to preparative tlc on SiO₂ with CHCl₃. The fraction of <u>Rf</u> 0.04-0.24 gave 2c as a pale brown oil(141 mg,

Table III. Yields and Ms, Ir and ¹H-Nmr Spectral Data for Phenacylamines(4c-h)^a

No	Yield	Formula	$Ms(m/z)(M^+)$	Ir(KBr)	¹ Η-Νmr(CDC1 ₃) δ
	(%)		Calcd(Found)	(cm ⁻¹)	· · ·
4c	91	C ₂₄ H ₂₄ NO ₃ I	501.0800	1683	7.85 and 7.82(each 1H,dd,J=8 and 2 Hz,H-3'
		21 21 2	(501.0793)		and 6),6.93(1H,ddd,J=8, 8 and 2 Hz,H-4'),
					6.79(1H,d,J=8 Hz,H-5),3.91 and 3.86(each 2H,
					s,2xCH ₂),3.92(3H,s,0CH ₃),3.89(5H,s,CH ₂ and OCH ₃)
4d	80	C ₂₄ H ₂₄ NO ₃ I	501.0800	1691	7.79(2H,d,J=7 Hz,H-2 and 6),7.38(2H,dd,J=7
		24 24 3	(501.0790)		and 7 Hz,H-3 and 5),7.34-7.21(5H,m,C ₆ H ₅),
					7.17(1H,s,H-3'),7.03(1H,s,H-6'),3.90,3.82,
					and 3.80(each 2H,s,3XCH ₂),3.83 and 3.75(each
					3H,s,OCH ₃)
4e	83	C22H19NOFI	459.0494	1687	7.82(1H,m,H-3'),7.80(2H,dd,J=9 and 5.5 Hz,H-
			(459.0453)		2 and 6),7.47(1H,dd,J=7.5 and 2 Hz,H-6'),
					7.37-7.23(5H,m,C ₆ H ₅),7.02(2H,dd,J=9 and 9
					Hz,H-3 and 5),6.93(1H,ddd,J=8, 7 and 2 Hz,
			h		H-4'),3.88, 3.85 and 3.84(each 2H,s,3xCH ₂)
4f	77	C22H19NOC1I	474.0121	1 69 0	7.81(1H,d,J=8 Hz,H-3'),7.70(2H,d,J=8 Hz,H-2
			(474.0081)		and 6),7.45(1H,d,J=7 Hz,H-6'),7.35-7.23(5H,
					m, C_6H_5 , 7.27(2H, d, J=8 Hz, H-3 and 5), 6.93(1H,
					ddd, J=8, 7 and 1 Hz, H-4'), 3.87 and 3.83(4H
_					and 2H,s,3XCH ₂)
4g	/5	C23H22NO1	453.0592	1688	7.81(1H,dd,J=8 and 1 Hz,H-3'),7.71(2H,d,J=
			(453,0598)		8 Hz, H-2 and 6), $7.55(1H, dd, J=8 and 1.5 Hz, I = 20(00 h = 2.0 Hz)$
					$H=6^{-1}$, $J=18(2H, d, J=8 HZ, H=3 and 5), 6.93(1H, d, J=0, J=0, J=0)$
					$aaa, J=8, 7$ and 1.5 HZ, H=4 $^{-1}$, 3.93, 3.91, 3,88
46	85		469 0002	1690	(each 2n, s, s, and 2), 2.30(sn, s, ing)
711	05	24 24 24	409.0902	1005	7.01(10,00,0-0) and $10.7,0-3$ $7.74(20,0-0)$
			(405.0075)		n_2, n_2 and $0, 1, 3, 5, 1, 1, 0, 0, -7, 5$ and $2, n_2, n_2$
					1=8 7 5 and 2 Hz H-4' 3 92 3 91 and 3 98
					(each 2H.s. 3XCH_), 2.67(2H.g. J=7.5 Hz
			. A.		CH_CH_) 1.23(3H_t J=7.5 Hz.CH_CH_)
					-2-3, ,

a. Ref. 1 for 4a,b. b. M-1.

752

74%). This was converted to the hydrochloride as colorless cubes(from EtOH-acetone), mp 181-182°C(decomp.). The physical and spectral data for 2c are shown in Tables I and IV. Reactions of other phenacylamines(4d-h) with BuLi were carried out in the same way as 4c. The physical and spectral data for the products(2d-h) are summerized in Tables I and IV. General Procedure for Reaction of N-Benzyl-N-(2-iodobenzyl)phenacylamines with Zerovalent This is exemplified by the reaction of 4c with zerovalent nickel.^{1,3} Ph₂P(2.503 Nickel g, 9.12 mmol), NiCl₂(580 mg, 4.47 mmol), and Zn(297 mg, 4.54 mmol) were placed in a twonecked flask. The flask was evacuated and filled with N_2 . Dry oxygen-free DMF(35 ml) was added through a syringe. The mixture was stirred at 60°C for 5 min. A solution of 4c(1.072 g, 2.14 mmol) in dry oxygen-free DMF(5 ml) was added and the mixture was stirred for 10 h at 60°C. Then, the mixture was acidified with 2% HCl and washed with ether. The aqueous layer was basified with 25% $NH_{A}OH$ and extracted with $CHCl_{3}(50 \text{ ml x 4})$. The extract was dried over $MgSO_A$ and evaporated to give a crude product(850 mg). This was subjected to preparative tlc on Al_20_3 with benzene-CHCl₃(5:1) to give the isoquinolin-4-ol(2c) as a pale yellow oil(298 mg, 37%). This was identical with 2c prepared with BuLi as described above by comparison of their ¹H-nmr spectra.

Reactions of other phenacylamines(4d-h) with zerovalent nickel were carried out in the same way as 4c.

<u>General Procedure for Reaction of N-Benzyl-1,2,3,4-tetrahydro-4-phenylisoquinolin-4-ols</u> with AlCl₃ This is exemplified by the reaction of 2a. AlCl₃(129 mg, 0.97 mmol) was added to a solution of 2a(76 mg, 0.24 mmol) in benzene(2 ml). The mixture was stirred for 30 min at room temperature. $H_2O(30 \text{ ml})$ was added and the mixture was basified with powdered Na_2CO_3 . The mixture was extracted with benzene(30 ml x 3). The extract was washed with brine, dried over MgSO₄ and evaporated <u>in vacuo</u> to give a crude product(80 mg). This was subjected to preparative tlc on SiO₂ with benzene-EtOH(10:1) to give 3a as colorless needles(59 mg, 83%), mp 140-145 °C(from MeOH)(lit.,⁷ mp 138-139 °C). ¹³C-Nmr: 144.30(s,C-1'), 143.13(s,C-11a and 12a), 135.57(s,C-4a and 7a), 129.26(d,C-1 and 11), 126.20(d, C-4'), 61.00(t,C-13), 57.70(t,C-5 and 7), 44.76(s,C-12). The physical and ¹Hnmr spectral data are shown in Tables II and IV.

Reactions of other isoquinolin-4-ols(2d-h) were carried out in the same way as 2a. The physical and spectral data for the products(3d-h) are summarized in Tables II and IV.

753

Table IV. ¹H-Nmr Spectral Data for Isoquinolin-4-ols(2c-h)^a and Azocines(3a-h)

- 2c 6.85(1H,d,J=2 Hz,H-2'), 6.80(1H,d,J=8.5 Hz,H-5'), 3.94 and 3.56(each 1H,d,J=15 Hz, CH₂-1), 3.88 and 3.85(each 3H,s,2X0CH₃), 3.94 and 3.56(each 1H,d,J=13 Hz,NCH₂Ph), 3.03 and 2.79(each 1H,d,J=12 Hz,CH₂-3)
- 2d $7.34(5H,s,NCH_2Ph)$, 6.52(1H,s,H-8), 6.42(1H,s,H-5), 3.85 and $3.47(each 1H,d,J=15 Hz,CH_2-1)$, 3.83 and $3.62(each 3H,s,2X0CH_3)$, 3.78 and $3.68(each 1H,d,J=13 Hz, NCH_2Ph)$, 3.02 and $2.73(each 1H,d,J=12 Hz,CH_2-3)$
- 2e 7.39(2H,dd,J=9 and 5.5 Hz,H-2' and 6'), 6.99(2H,dd,J=9 and 9 Hz,H-3' and 5'), 3.93 and 3.56(each 1H,d,J=15 Hz,CH₂-1), 3.73(2H,s,NCH₂Ph), 2.99 and 2.74(each 1H,d,J= 12 Hz,CH₂-3)
- 2f 6.92(1H,dd,J=7.5 and 1.5 Hz,H-5), 3.93 and 3.56(each 1H,d,J=15 Hz,CH₂-1), 3.73
 (2H,s,NCH₂Ph), 2.98 and 2.73(each 1H,d,J=12 Hz,CH₂-3)
- 2g 3.94 and 3.54(each 1H,d,J=15 Hz,CH₂-1), 3.73(2H,s,NCH₂Ph),3.02 and 2.76(each 1H,d, J=12 Hz,CH₂-3), 2.34(3H,s,CH₃)
- 2h 7.34 and 7.16(each 2H,d,J=8 Hz,H-2' and 6', and H-3' and 5'), 6.97(1H,dd,J=7 and 2 Hz,H-5), 3.95 and 3.56(each 1H,d,J=15 Hz,CH₂-1), 3.74(2H,s,NCH₂Ph),3.03 and 2.77 (each 1H,d,J=12 Hz,CH₂-3), 2.65(2H,q,J=7.5 Hz,CH₂CH₃), 1.25(3H,t,J=7.5 Hz,CH₂CH₃)
- **3a** 4.72 and 3.96(each 2H,d,J=17.5 Hz,CH₂-5 and 7), 3.34(2H,s,CH₂-13)
- **3b** 7.32(2H,d,J=9 Hz,H-2' and 6'), 6.87(2H,d,J=9 Hz,H-3' and 5'), 4.71 and 3.95(each 2H,d,J=17 Hz,CH₂-5 and 7), 3.82(3H,s,OCH₃), 3.31(2H,s,CH₂-13)
- 3c 6.91(1H,d,J=2 Hz,H-2'), 6.84(1H,d,J=8.5 Hz,H-5'), 4.72 and 3.96(each 2H,d,J=18 Hz, CH₂-5 and 7), 3.92 and 3.90(each 3H,s,2X0CH₃), 3.34(2H,s,CH₂-13)
- **3d** 7.46-7.28(5H,m,C₆H₅-12), 7.12-7.03(4H,m,H-8, 9, 10 and 11), 6.76(1H,s,H-1), 6.51 (1H,s,H-4), 4.79 and 4.07(each 1H,d,J=17 Hz,CH₂-7), 4.70 and 3.92(each 1H,d,J=16.5 Hz,CH₂-5), $3.81(3H,s,0CH_3-3)$, $3.71(3H,s,0CH_3-2)$, $3.35(2H,s,CH_2-13)$
- 3e 7.38(2H,dd,J=9 and 5.5 Hz,H-2' and 6'), 4.71 and 3.96(each 2H,d,J=17.5 Hz,CH₂-5 and 7), $3.30(2H,s,CH_2-13)$
- 3f 7.37 and 7.28(each 2H,d,J=9 Hz,H-2' and 6', and H-3'and 5'), 4.70 and 3.94(each 2H,d,J=18 Hz,CH₂-5 and 7), 3.30(2H,s,CH₂-13)
- 3g 7.30 and 7.14(each 2H,d,J=8 Hz,H-2' and 6', and H-3' and 5'), 4.70 and 3.99(each 2H,d,J=17.5 Hz,CH₂-5 and 7), 3.30(2H,s,CH₂-13), 2.67(3H,s,CH₃)
- **3h** 7.32 and 7.16(each 2H,d,J=8 Hz,H-2' and 6', and H-3' and 5'), 4.69 and 3.94(each 2H,d,J=18 Hz,CH₂-5 and 7), 3.31(2H,s,CH₂-13), 2.67(2H,q,J=7.5 Hz,CH₂CH₃), 1.27 (3H,t,J=7.5 Hz,CH₂CH₃)

a. Ref. 1 for 2a,b.

<u>General Procedure for Reaction of N-Benzyl-1,2,3,4-tetrahydro-4-phenylisoquinolin-4-ols</u> <u>with 85% H₂SO₄</u> This is exemplified by the reaction of 2a. The hydrochloride(52.9 mg, 0.15 mmol) of 2a was suspended in 85% H₂SO₄(1 ml) and was stirred for 30 min under icecooling. The reaction mixture was poured into ice-water(30 ml) and basified with powdered Na₂CO₃. The mixture was extracted with CHCl₃(50 ml x 3). The extract was washed with H₂O, dried over MgSO₄, and evaporated to give a crude product(63 mg). This was purified by preparative tlc on SiO₂ with benzene-EtOH(10:1) to give colorless crystals(34.8 mg, 78%), mp 139-142°C. This was identical with a sample of **3a** prepared with AlCl₃ as described above by comparison of their ¹H-nmr spectra and by a mixed melting point test. Reaction of other <u>N</u>-benzylisoquinolin-4-ols(2b-d) with 85% H₂SO₄ was carried out in the same way as 2a. The physical and ¹H-nmr spectral data for the products(**3b**-d) are shown in

<u>Reaction of N-Benzyl-1,2,3,4-tetrahydro-4-(4-methoxyphenyl)isoquinolin-4-ol(2b) with</u> <u>CF₃SO₃H</u> The free base(86.1 mg, 0.26 mmol) of 2b was dissolved in CF₃SO₃H(3 ml) under ice-cooling. The solution was stirred at room temperature overnight. The reaction mixture was poured into ice-water(20 ml) and basified with 25% NH₄OH. The mixture was extracted with CHCl₃(20 ml x 4). The extract was dried over MgSO₄ and evaporated to give an oil (82.7 mg). This was subjected to preparative tlc on SiO₂ with benzene-EtOH(10:1) to give **3b** as a pale yellow oil(45.7 mg, 57%). Ms(m/z)(M⁺):Calcd for C₂₃H₂₁NO:327.1622. Found:327.1622. This oily product was converted to the hydrochloride as colorless needles (from MeOH), mp 165-166.5°C. This was identical with the hydrochloride of **3b** prepared with 85% H₂SO₄ by comparison of the ¹H-nmr spectra of their free bases.

Tables II and IV.

REFERENCES

- 1. M.Kihara, M.Kashimoto, and Y.Kobayashi, Tetrahedron, "in press".
- 2. M.Kihara, M.Kashimoto, Y.Kobayashi, and S.Kobayashi, Tetrahedron Lett., 1990,31,5347.
- M.Kihara, A.Nakanishi, and S.Kobayashi, <u>Heterocycles</u>, 1989,29,957; M.Kihara, Y.Ishida, and S.Kobayashi, J. Chem. Res.(S), 1987,236.
- 4. Y.Ishida, N.Koga, T.Nanbu, M.Kihara, and S.Kobayashi, Br. J. Pharmcol., 1988,94,19.
- M.Kihara, M.Kashimoto, S.Kobayashi, Y.Ishida, H.Moritoki, and Z.Taira,
 J. Med. Chem., 1990,33,2283.
- 6. Y.Murakami, T.Watanabe, A.Kobayashi, and Y.Yokoyama, Synthesis, 1984,738.
- 7. H.Takayama, T.Suzuki, M.Takamoto, and T.Okamoto, <u>Heterocycles</u>, 1978, 9,1429; T.Suzuki,
 M.Takamoto, T.Okamoto, and H.Takayama, Chem. <u>Pharm. Bull.</u>, 1986, 34,1888.
- 8. M.Kihara, S.Iguchi, Y.Imakura, and S.Kobayashi, Heterocycles, 1989,29,1097.
- S.Kajigaeshi, T.Kakinami, H.Tokiyama, T.Hirakawa, and T.Okamoto, <u>Bull. Chem. Soc.</u> Jpn., 1987,60,2667.

Received, 18th December, 1991