Etsuji Okada, Ryoichi Masuda, and Masaru Hojo^{*} Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan

<u>Abstract</u> - 3- and 5-Trifluoromethyl-4-trifluoroacetylpyrazoles (4 and 5) were easily synthesized in excellent yields by reaction of β , β -bis(trifluoroacetyl)vinyl ethers 1, sulfides 2, and -amines 3 with hydrazines. Hydrolysis of these compounds (4 and 5) with aqueous potassium hydroxide gave the corresponding pyrazole-4-carboxylic acids (6 and 7) in high yields.

In the course of our extensive investigations on the nucleophilic substitutions at olefinic carbon atoms, 1^{-6} it was found that β,β -bis(trifluoroacetyl)vinyl <u>i</u>-butyl ether 1 readily reacts with various thiols and amines under very mild conditions to give the corresponding O-S and O-N exchanged products (e.g., 2 and 3) in high yields.⁶ As an extension of this work, we used this type of nucleophilic exchange reaction and subsequent cyclodehydration with bifunctional N-nucleophiles such as hydrazines to prepare 3- and 5-trifluoromethyl-4-trifluoroacetylpyrazoles (4 and 5) which are hardly obtainable by other routes. The conversion of the products (4 and 5) into 3- and 5-trifluoromethylpyrazole-4-carboxylic acids (6 and 7) by alkaline hydrolysis was also studied. Recently, the development of new methodologies for the synthesis of various fluorine-containing heterocycles has received a growing interest, since many kinds of these compounds are now widely recognized as important organic materials exhibiting interesting functionalities for use in medicinal and agricultural science.⁷⁻⁹ Besides, pyrazolecarboxylic acids have been very useful intermediates for fine chemicals, and development of effective synthetic methods for these compounds is nowadays much desirable.^{10,11} Ether 1, which is readily prepared from i-butyl vinyl ether and trifluoroacetic anhy-

791

Scheme 1

Table	1.	Synthesis	of	3-	and	5-Trifluoromethy	71-4-	-triflu	oroacety	lpyrazoles
-------	----	-----------	----	----	-----	------------------	-------	---------	----------	------------

Entry	Substrate	Hydrazine, R	Product	Yield (%) ^{a)}
1	1	Ме	4a	73
2	2	Me	4a	93
3	3	Me	4a	97
4	1	$t-Bu^{b}$	4b / 5b	10 / 20
5	2	\overline{t} -Bu ^b)	5b	94
6	3	$\overline{t} - Bu^{b}$	5b	94
7	· 1		4c / 5c	12 / 62
8	2	Ph	4c / 5c	20 / 80
9	3	Ph	4c / 5c	5 / 95
10	1	$p-NO_2C_6H_4$	5d	75

a) Yield of isolated products. b) <u>t</u>-Butylhydrazine hydrochloride was used in the presence of triethylamine.

dride,¹² reacted quite easily with methylhydrazine at room temperature for 1 h to give only 3-trifluoromethylpyrazole 4a in 73% yield (Scheme 1 and Table 1). The similar reactions of sulfide 2 and amine 3 also afforded 4a as a sole product in 93 and 97% yields, respectively. In contrast, the reaction of sulfide 2 and amine 3 with <u>t</u>-butylhydrazine hydrochloride in the presence of triethylamine yielded exclusively 5-trifluoromethylpyrazole 5b in high yields without formation of any detectable amounts of 3-trifluoromethylpyrazole 4b. However, this regioselectivity was lost and the yields went down in the reaction of ether 1, where a mixture of 5b (20%) and 4b (10%) was obtained together with decomposition products. The reactions of 1-3 with phenylhydrazine resulted in preferential formation of 5-trifluoromethylpyrazole 5c in 62-95% yields, with formation of isomeric 3-trifluoromethylpyrazole 4c in 5-20% yields. These isomeric pyrazoles (4c and 5c) were separated and isolated in pure state by careful column chromatography on silica gel. Ether 1 reacted easily with p-nitrophenylhydrazine to provide exclusively 5-trifluoromethylpyrazole 5d in 75% yield and none of the possible regioisomer was found. The hydrolysis of 4-trifluoroacetylpyrazoles (4a-c and 5b-d) with saturated aqueous potas-

Scheme 2

Table 2.Synthesis of 3- and 5-Trifluoromethylpyrazole-4-carboxylic Acids

Entry	Substrate	Product	Yield (%) ^{a)}
1	4a	6a	93
2	4b	6b	100
3	4c	6с	100
4	5b	7b	84
5	5c	7c	85
6	5d	7d	100

a) Yield of isolated products.

sium hydroxide was performed in ethanol as solvent at room temperature for 4 h to give the corresponding pyrazole-4-carboxylic acids (6a-c and 7b-d) in 84-100% yields (Scheme 2 and Table 2).

The structures of compounds 4-7 were determined on the basis of their ¹H-nmr, ir, and elemental analyses. In paticular, the structural distinction between 3-trifluoromethylpyrazoles (4a and 4c) and 5-trifluoromethylpyrazole 5c was confirmed by comparison with authentic samples which were prepared independently as follows (Scheme 3). Treatment of ether 1 with benzaldehyde methyl- and phenylhydrazones at room temperature for 0.5 h gave the corresponding 0-N exchanged products (8 and 9) in quantitative yields. Hydrolysis of azomethine moiety and subsequent cyclodehydration were performed in one-pot by merely mixing hydrazones (8 and 9) and trifluoroacetic acid containing a small amount of water in chloroform at room temperature for 3 h to afford 3-trifluoromethylpyrazoles (4a and 4c) in 72-76% yields. Both ¹H-nmr and ir spectra of the resulting pyrazoles (4a and 4c) were

Scheme 3

in good accordance with those of the samples obtained directly from 1-3 and the corresponding hydrazines. Coincidence of the two 4a's obtained independently was ascertained by converting them further into pyrazole-4-carboxylic acid 6a and by mixed melting point. Likewise, structure of 4c was confirmed. Since the structure of 3-trifluoromethylpyrazole 4c was established as above, the other pyrazole 5c should be the isomeric 5-trifluoromethylated pyrazole. Although the alternative syntheses of 3-trifluoromethylpyrazoles (4b and 4d) from 1-3 with benzaldehyde <u>t</u>-butyl- and <u>p</u>-nitrophenylhydrazones failed, the clear structural distinction between the two regioisomers was made by judging from the chemical shifts for the ring protons of the pyrazoles. The chemical shifts of H-5 in 4b and 4c appeared downfield with respect to those of H-3 in 5b and 5c by <u>ca</u>. 0.3 ppm. In the case of 5d, the chemical shift of its H-3 (8.20 ppm) was much more similar to that of H-3 (8.12 ppm) in 5c than that of H-5 (8.39 ppm) in 4c.

In conclusion, nucleophilic O-N, S-N, and N-N exchange reactions of 1-3 with hydrazines, followed by cyclodehydration provide a facile synthetic method for 3- and 5-trifluoromethyl-4-trifluoroacetylpyrazoles, which are easily converted into 3- and 5-trifluoromethylpyrazole-4-carboxylic acids.

EXPERIMENTAL

Melting points were determined on an electrothermal digital melting point apparatus and are uncorrected. Ir spectra were recorded on a Hitachi EPI-G3 spectrophotometer. ¹H-Nmr

spectra were obtained with JEOL PMX 60SI spectrometer using CDCl₃ as a solvent unless otherwise indicated. All chemical shifts are reported in ppm downfield from internal tetramethylsilane; coupling constants (J) are given in Hz. Elemental analyses were performed by the Microanalyses Center of Kyoto University. Chromatographic separations were carried out on silica gel column (Wakogel C-200; 100-200 mesh). Benzaldehyde methyl- and phenylhydrazones were prepared by condensation of benzaldehyde with methyl- and phenylhydrazines. All other reagents and solvents were obtained commercially, dried over molecular sieves, and used without further purification.

Reaction of $\beta_1\beta_2$ -Bis(trifluoroacety))vinyl Ether 1, Sulfide 2, and Amine 3 with Hydrazines; General Procedure: Method A (for entries 1-3 in Table 1): To a solution of 1,¹² 2,⁶ or 3⁶ (2 mmol) in MeCN (10 ml) was added methylhydrazine (2 mmol). The solution was stirred at room temperature for 1 h, then evaporated under reduced pressure to give 4a. Method B (for entries 4-6 in Table 1): To a suspension of <u>tert</u>-butylhydrazine hydrochloride (5 mmol) and triethylamine (0.51 g, 5 mmol) in MeCN (20 ml) was added 1, 2, or 3 (5 mmol), and the mixture was stirred at room temperature for 1 h. The solvent was then removed under reduced pressure and CH_2Cl_2 (100 ml) was added to the residue. This solution was washed with H_2O (300 ml) and dried (Na_2SO_4). The solvent was evaporated, and the crude product was chromatographed using hexane/benzene (1:1) for 4b and hexane/benzene (4:1) for 5b as eluent. Method C (for entries 7-10 in Table 1): To a solution of 1, 2, or 3 (2 mmol) in MeCN (10 ml) was added phenyl- or p-nitrophenylhydrazine (2 mmol) and the whole mixture was stirred at room temperature for 1 h. The resulting solution was evaporated and the crude product was chromatographed using hexane/benzene (1:1) for 4c, hexane/benzene (2:1) for 5c, and benzene for 5d as eluent.

4-Trifluoroacetyl-3-trifluoromethyl-1-methylpyrazole 4a: bp 100 °C/1 mmHg; ir (film) 1720 cm⁻¹; ¹H-nmr 8.03 (1H, s, H-5), 4.03 (3H, s, CH₃). Anal. Calcd for C₇H₄N₂OF₆: C, 34.16; H, 1.64; N, 11.38; F, 46.32. Found: C, 34.34; H, 1.70; N, 11.46; F, 46.11. 1-(<u>t</u>-Butyl)-4-trifluoroacetyl-3-trifluoromethylpyrazole 4b: mp 41-42 °C (hexane); ir (KBr) 1723 cm⁻¹; ¹H-nmr 8.13 (1H, s, H-5), 1.66 (9H, s, C(CH₃)₃). Anal. Calcd for C₁₀H₁₀N₂OF₆: C, 41.68; H, 3.50; N, 9.72; F, 39.55. Found: C, 41.58; H, 3.44; N, 9.78; F, 39.70.

4-Trifluoroacety1-3-trifluoromethy1-1-pheny1pyrazole 4c: mp 88-89 °C (benzene); ir (KBr)

795

1723 cm⁻¹; ¹H-nmr 8.39 (1H, s, H-5), 7.72-7.32 (5H, s, C₆H₅). Anal. Calcd for C₁₂H₆N₂OF₆: C, 46.77; H, 1.96; N, 9.09; F, 36.99. Found: C, 46.90; H, 1.96; N, 9.35; F, 36.97. **1-(<u>t</u>-Butyl)-4-trifluoroacetyl-5-trifluoromethylpyrazole 5b**: bp 50 °C/4 mmHg; ir (film) 1737 cm⁻¹; ¹H-nmr 7.83 (1H, s, H-3), 1.73 (9H, s, C(CH₃)₃). Anal. Calcd for C₁₀H₁₀N₂OF₆: C, 41.68; H, 3.50; N, 9.72; F, 39.55. Found: C, 41.73; H, 3.47; N, 9.87; F, 39.26. **4-Trifluoroacetyl-5-trifluoromethyl-1-phenylpyrazole 5c**: bp 80 °C/1 mmHg; ir (film) 1724 cm⁻¹; ¹H-nmr 8.12 (1H, s, H-3), 7.42 (5H, s, C₆H₅). Anal. Calcd for C₁₂H₆N₂OF₆: C, 46.77; H, 1.96; N, 9.09. Found: C, 46.80; H, 1.94; N, 9.37.

4-Trifluoroacetyl-5-trifluoromethyl-1-(p-nitrophenyl)pyrazole 5d: mp 84-85 °C (benzene); ir (KBr) 1726 cm⁻¹; ¹H-nmr 8.33 (2H, d, J=9, C₆H₄), 8.20 (1H, s, H-3), 7.60 (2H, d, J=9, C₆H₄). Anal. Calcd for C₁₂H₅N₃O₃F₆: C, 40.81; H, 1.43; N, 11.90; F, 32.27. Found: C, 40.82; H, 1.36; N, 12.03; F, 32.33.

Conversion of 4-Trifluoroacetylpyrazoles (4 and 5) into Pyrazole-4-carboxylic Acids (6 and 7); General Procedure: To a stirred solution of 4 or 5 (1 mmol) in EtOH (4 ml) was added saturated aqueous solution of KOH (2 ml) and stirring was continued at room temperature for 4 h. The basic solution was acidified with 2N HCl (20 ml) in an ice bath. Most of the solvent was removed under reduced pressure and the resulting mixture was diluted with CH_2Cl_2 (50 ml), and dried (Na_2SO_4) . Evaporation of the solvent gave pyrazole-4-carboxylic acids (6 or 7).

3-Trifluoromethyl-1-methylpyrazole-4-carboxylic Acid 6a: mp 199-200 °C (CHCl₃); ir (KBr) 3575-2175, 1731 cm⁻¹; ¹H-nmr (CD₃CN/CDCl₃) 8.00 (1H, s, H-5), 6.17 (1H, br s, OH), 3.88 (3H, s, CH₃). Anal. Calcd for C₆H₅N₂O₂F₃: C, 37.13; H, 2.60; N, 14.43; F, 29.36. Found: C, 37.11; H, 2.53; N, 14.38; F, 29.15.

1-(t-Buty1)-3-trifluoromethylpyrazole-4-carboxylic Acid 6b: mp 163-164 °C (benzene); ir (KBr) 3700-2100, 1711 cm⁻¹; ¹H-nmr 8.27-7.57 (1H, br, OH), 8.12 (1H, s, H-5), 1.62 (9H, s, C(CH₃)₃). Anal. Calcd for C₉H₁₁N₂O₂F₃: C, 45.77; H, 4.69; N, 11.86; F, 24.13. Found: C, 46.03; H, 4.86; N, 11.88; F, 23.91.

3-Trifluoromethyl-1-phenylpyrazole-4-carboxylic Acid 6c: mp 179-180 °C (hexane/CHCl₃); ir (KBr) 3675-2150, 1723 cm⁻¹; ¹H-nmr 8.43 (1H, s, H-5), 7.757.20 (6H, m, C₆H₅, OH). Anal. Calcd for C₁₁H₇N₂O₂F₃: C, 51.57; H, 2.75; N, 10.94; F, 22.25. Found: C, 51.43; H, 2.67; N, 10.84; F, 21.97.

1-(<u>t</u>-Buty1)-5-trifluoromethyIpyrazole-4-carboxylic Acid Tb: mp 114-115 °C (hexane); ir (KBr) 3600-2170, 1718 cm⁻¹; ¹H-nmr 10.31 (1H, s, OH), 7.83 (1H, s, H-3), 1.69 (9H, s, C(CH₃)₃). Anal. Calcd for C₉H₁₁N₂O₂F₃: C, 45.77; H, 4.69; N, 11.86; F, 24.13. Found: C, 46.13; H, 4.78; N, 11.92; F, 23.81.

5-Trifluoromethyl-1-phenylpyrazole-4-carboxylic Acid 7c: mp 132-133 °C (CHCl₃); ir (KBr) 3530-2175, 1700 cm⁻¹; ¹H-nmr (CD₃CN/CDCl₃) 8.42 (1H, br s, OH), 8.09 (1H, s, H-3), 7.45 (5H, s, C₆H₅). Anal. Calcd for C₁₁H₇N₂O₂F₃: C, 51.57; H, 2.75; N, 10.94; F, 22.25. Found: C, 51.28; H, 2.68; N, 10.66; F, 22.14.

5-Trifluoromethyl-1-(p-nitrophenyl)pyrazole-4-carboxylic Acid 7d: mp 197-198 °C (CHCl₃); ir (KBr) 3600-2270, 1692 cm⁻¹; ¹H-nmr (CD₃CN/CDCl₃) 8.27 (2H, d, J=9, C₆H₄), 8.07 (1H, s, H-3), 7.57 (2H, d, J=9, C₆H₄), 7.33 (1H, br s, OH). Anal. Calcd for $C_{11}H_6N_3O_4F_3$: C, 43.87; H, 2.01; N, 13.95; F, 18.92. Found: C, 44.09; H, 1.94; N, 13.89; F, 18.89. Reaction of β , β -Bis(trifluoroacetyl)vinyl <u>i</u>-Butyl Ether 1 with Benzaldehyde Methyl- and Phenylhydrazones; General Procedure: To a solution of 1 (0.59 g, 2 mmol) in MeCN (8 ml) was added benzaldehyde methyl- or phenylhydrazone (2 mmol). The whole mixture was stirred at room temperature for 0.5 h and the solvent was evaporated under reduced pressure to give 8 or 9.

Benzaldehyde <u>N-[β,β-Bis(trifluoroacetyl)vinyl]methylhydrazone</u> 8: mp 120-121 °C (hexane/ benzene); ir (KBr) 1733, 1668 cm⁻¹; ¹H-nmr 7.77 (2H, s, HC=), 7.37 (5H, s, C₆H₅), 3.57 (3H, s, CH₃). Anal. Calcd for C₁₄H₁₀N₂O₂F₆: C, 47.74; H, 2.86; N, 7.95; F, 32.36. Found: C, 47.83; H, 2.78; N, 7.68; F, 32.14.

Benzaldehyde <u>N-[β,β-Bis(trifluoroacetyl)vinyl]phenylhydrazone 9</u>: mp 142-143 °C (hexane/ benzene); ir (KBr) 1753, 1660 cm⁻¹; ¹H-nmr 7.85 (1H, s, HC=), 7.626.96 (11H, m, 2C₆H₅, HC=). Anal. Calcd for C₁₉H₁₂N₂O₂F₆: C, 55.08; H, 2.92; N, 6.76; F, 27.51. Found: C, 54.95; H, 2.73; N, 6.96; F, 27.41.

Conversion of Hydrazone 8 into Pyrazole 4a: To a solution of 8 (704 mg, 2 mmol) in $CHCl_3$ (6 ml) was added trifluoroacetic acid (1.5 ml, 19.5 mmol) containing a small amount of water. After stirring at room temperature for 3 h CH_2Cl_2 (100 ml) was added and the mixture was washed with ice-cold 10% aq. Na_2CO_3 (200 ml) and dried (Na_2SO_4). The solvent was evaporated to give the crude mixture of pyrazole 4a and benzaldehyde. Fractional distillation under reduced pressure (100 °C/1 mmHg) afforded pure 4a (374 mg, 76%).

797

Conversion of Hydrazone 9 into Pyrazole 4c: To a solution of 9 (829 mg, 2 mmol) in $CHCl_3$ (6 ml) was added trifluoroacetic acid (1.5 ml, 19.5 mmol) containing a small amount of water. After the reaction and work-up procedure as above, the crude mixture of pyrazole 4c and benzaldehyde was obtained. Benzaldehyde was removed by distillation under reduced pressure (50 °C/1 mmHg) and the residue was submitted to chromatography to give pure 4c (443 mg, 72%).

REFERENCES

- Y. Kamitori, M. Hojo, R. Masuda, T. Fujitani, T. Kobuchi, and T. Nishigaki, <u>Synthesis</u>, 1986, 340.
- M. Hojo, R. Masuda, E. Okada, S. Sakaguchi, H. Narumiya, and K. Morimoto, <u>Tetrahedron</u> <u>Lett.</u>, 1989, <u>30</u>, 6173.
- 3. M. Hojo, R. Masuda, E. Okada, H. Yamamoto, K. Morimoto, and K. Okada, <u>Synthesis</u>, **1990**, 195.
- 4. M. Hojo, R. Masuda, and E. Okada, Chemistry. Lett., 1990, 2095.
- 5. E. Okada, R. Masuda, M. Hojo, and R. Inoue, Synthesis, in press.
- 6. M. Hojo, R. Masuda, E. Okada, and Y. Mochizuki, Synthesis, in press.
- 7. R. Filler, 'Organofluorine Chemicals and Their Industrial Applications,' ed. R. E. Banks, Ellis Horwood, London, 1979.
- R. Filler and Y. Kobayashi, 'Biomedicinal Aspects of Fluorine Chemistry,' Kodansha & Elsevier Biomedical, Tokyo, 1982.
- 9. J. T. Welch, Tetrahedron, 1987, 43, 3123.
- 10. S. Yamamoto, T. Iwasawa, F. Suzuki, T. Ikai, K. Suzuki, and T. Nawamaki, <u>J. Pesticide</u> <u>Sci.</u>, 1990, <u>15</u>, 531.
- 11. N. Tanaka, S. Shinke, and S. Takigawa, Chemistry. Lett., 1991, 585.
- 12. M. Hojo, R. Masuda, and E. Okada, Synthesis, 1990, 347.

Received, 26th December, 1991