SESQUITERPENE PYRIDINE ALKALOIDS FROM MAYTENUS EBENIFOLIA

Hideji Itokawa,* Osamu Shirota, Hiroshi Morita, and Koichi Takeya

Department of Pharmacognosy, Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

<u>Abstract</u> - Three new sesquiterpene pyridine alkaloids, ebenifolines W-I (1), E-I (2), and E-II (3) were isolated from the stem barks of <u>Maytenus ebenifolia</u> Reiss. (Celastraceae). Their structures were elucidated by spectroscopic methods.

In the course of our continuing research among Amazonian medicinal plants,^{1,2} we had a interest in the genus <u>Maytenus</u>, because the plants classified into this genus had been used for various purposes as folk medicine, such as antitumor, antirheumatism and anti-inflammatory, by several tribes in Amazonian basin.^{3,4} We report herein the isolation and structural characterization of three new sesquiterpene pyridine alkaloids from the stem barks of <u>Maytenus ebenifolia</u> Reiss. (Celastraceae), which was used against rheumatism in Amazonian Peru, named as "chuchuhuasi".^{3,4}

Ebenifoline W-I (1)

Figure 1. The structures of ebenifolines.

Fractionation of CH₂Cl₂ soluble phase of the MeOH extract led us to the isolation of three new sesquiterpene pyridine alkaloids, ebenifolines W-I (1) (wilfordate type⁵⁻⁷), E-I (2) and E-II (3) (evoninate type⁸⁻¹⁰). A combination of ¹H-¹H COSY, ¹³C-¹H COSY, COLOC, HMQC and HMBC¹¹ spectra enabled us to perform complete assignment of the ¹H- and ¹³C-signals of 1, 2 and 3, as shown in Tables 1 and 2, respectively.

Proton	ebenifoline W-I	proton	ebenifoine E-I	ebenifoline E-II
<u>1-H</u>	6.13 (d, 3.9)	1-H	5.76 (d, 3.9)	5.94 (d, 3.9)
2-H	5.52 (dd, 2.4, 3.9)	2-H	4.13 (dd, 2.6, 3.9)	5.41 (dd, 2.5, 3.9)
3-Н	5.16 (d, 2.4)	3-H	4.83 (d, 2.6)	4.83 (d, 2.5)
4-OH	4.99 (s)	4-OH	4.47 (br-s)	4.78 (s)
5-H	6.96 (s)	5-H	7.06 (s)	7.22 (s)
6-H	2.40 (d, 3.8)	6-H	2.35 (d, 4.0)	2.55 (d, 4.0)
7-H	5.57 (dd, 3.8, 5.8)	7-H	5.53 (dd, 4.0, 5.8)	5.58 (dd, 4.0, 5.7)
8-H	5.48 (d, 5.8)	8-H	5.41 (d, 5.8)	5.48 (d, 5.7)
11-Ha	4.61 (d, 13.3)	11-Ha	4.81 (d, 13.8)	4.76 (d, 13.4)
1 1-Hb	5.69 (d, 13.3)	11-Hb	5.47 (d, 13.8)	5.41 (d, 13.4)
12-CH3	1.70 (s)	12-CH3	1.63 (d, 1.2)	1.61 (s)
14-CH3	1.74 (s)	14-CH3	1.71 (s)	1.75 (s)
15-Ha	3.83 (d, 11.9)	15-Ha	3.69 (d, 11.7)	3.64 (d, 11.5)
15-Hb	5.77 (d, 11.9)	15-Hb	5.98 (d, 11.7)	6.05 (d, 11.5)
4'-H	8.34 (dd, 1.6, 8.0)	4'-H	8.06 (dd, 1.8, 7.8)	8.07 (dd, 1.7, 7.8)
5'-H	7.30 (dd, 4.7, 8.0)	5'-H	7.26 (dd, 4.9, 7.8)	7.27 (dd, 4.8, 7.8)
6'-H	8.77 (dd, 1.6, 4.7)	6'-H	8.69 (dd, 1.8, 4.9)	8.71 (dd, 1.7, 4.8)
7'-Ha	2.99 (ddd, 4.5, 6.2, 13.6)	7'-H	4.67 (q, 7.0)	4.74 (q, 6.9)
7'-Hb	3.97 (ddd, 6.3, 9.5, 13.6)			
8'-Ha	2.04 (m)	8'-H	2.58 (q, 7.1)	2.64 (q, 7.1)
8'-Hb	2.32 (m)			
9'-H	2.47 (m)	9'-CH3	1.38 (d, 7.0)	1.46 (d, 6.9)
10'-CH3	<u>1.26 (d, 7.0)</u>	10'-CH3	1.17 (d, 7.1)	<u>1.24 (d, 7.1)</u>
1-OBz(o)	7.78 (d, 7.7)	1-OBz(0)	7.95 (dd, 1.3, 8.5)	7.84 (d, 7.1)
OBz(m)	7.32 (t-like, 7.8)	OBz(m)	7.42 (t-like, 7.8)	7.40 (t-like, 7.7)
OBz(p)	7.49 (t-like, 7.4)	OBz(p)	7.56 (dt-like, 1.3, 7.5)	7.54 (t-like, 7.4)
2-OAc		2-OAc		2.17 (s)
OBz(o)	8.09 (d, 7.7)	OBz(o)		
OBz(m)	7.51 (t-like, 7.8)	OBz(m)		
OBz(p)	7.63 (t-like)	OBz(p)		
5-OAc	2.19 (s)	5-OAc	2.21 (s)	
OBz(o)		OBz(o)		8.34 (d, 7.3)
OBz(m)		OBz(m)		7.50 (t-like, 7.7)
OBz(p)		OBz(p)		7.60 (t-like, 7.4)
<u>7-OAc</u>	2.14 (s)	7-OAc	2.12 (s)	2.21 (s)
8-OAc	1.36 (s)	8-OAc	1.40 (s)	1.43 (s)
11-OAc	2.21 (s)	11-OAc	2.37 (s)	2.37 (s)

Table 1. ¹H Nmr chemical shifts (ppm) for ebenifolines W-I, E-I and E-II.

Measurements were performed in CDCl3 at 400 MHz.

Multiplicity and coupling constants (J/Hz) were in parenthesis.

Ebenifoline W-I (1)¹² was obtained as an amorphous solid, and its molecular formula $C_{48}H_{51}NO_{18}$ (m/z 929.3124) was determined by means of HR ms spectrum. The ir spectrum showed the presence of a hydroxyl group (3444 cm⁻¹) ascribable to an intramolecular hydrogen bond and several ester carbonyl groups (1750-1725 cm⁻¹). The ¹H-nmr spectrum (400 MHz, CDCl₃) showed the presence of two tertiary methyl groups (δ 1.70, H-12; δ 1.74, H-14), four acetyl methyl groups (δ 1.36, AcO-8; δ 2.14, AcO-7; δ 2.19, AcO-5; δ 2.21, AcO-11), two methylene groups (δ 4.61 and 5.69, H-11; δ 3.83 and 5.77, H-15), and seven methine protons (δ 6.13, H-1; δ 5.52, H-2; δ 5.16, H-3; δ 6.96, H-5; δ 2.40, H-6; δ 5.57, H-7; δ 5.48, H-8), suggesting a dihydro- β -agarofuran-type sesquiterpene similar to euonyminol.⁸⁻¹⁰ In addition, the presence of one secondary methyl group (δ 1.26, H-10') coupled with one methine proton (δ 2.47, H-9'), two methylene groups (δ 2.99 and 3.97, H-7'; δ 2.04 and 2.32, H-8') coupled each other and a 2,3-disubstituted pyridine (δ 8.34, H-4'; δ 7.30, H-5'; δ 8.77, H-6') were observed. This indicated the presence of a wilfoldate macrocyclic diester linkage⁵⁻⁷ at C-3

Carbon	- 1		2		3	
1	73.47	ത	75.49	(d)	73.51	(d)
2	70.51	ã	70.11	à	69.21	à
2	75 94	Ж.	78.39	λ	75.86	à
4	69.88	(a)	70.64	ŝ	70.72	ŝ
	73.85	ä.	74 07	a a	74.89	à
5	51 18	a.	50.52	a a	50.40	à
7	60.03	ä	69.07	a	69.11	à
2 2	71.65	ä	71 78	- XX	71 55	à
ő	52 54	(a)	53.00	ŝ	52.72	ŝ
10	03.80	(a)	94.62	(s)	93.83	(s)
10	60.83	(a)	60.47	<i>й</i>	60.15	ă
12	23.15	Ŵ	23.13	(d)	22.91	č)
12	84 71	8	84 24	6	84 44	(d)
13	17 07	^w	18 47	(a)	18 35	čů –
14	70.30	8	70.17	æ	70.04	a di
15	164.00	6	165 21	(c)	165 23	(s)
2	124.00		125 45	(3)	125.20	(iii)
2	129.79	(a)	127 72	ä	137.66	ä
4 5'	121.70		121 17	ä	121 14	ä
5	153 21	a a	151 49	a	151 51	a)
0 7'	33.40	(u) (t)	36.58	ä	36.48	a a
/ Q1	33.35	8	45 08	ä	45.05	a)
o Oʻ	38.55	X	12.00	- M	11 90	(d)
10'	19.90	(u)	0.48	^{CC}	9.72	(a)
10	175 12	8	174 71	a a	173 93	(a)
12	166.94	(0)	168 57	(a)	168.61	ŝ
-100-0	165.02	(e)	164.98	- <u>(6)</u>	164 62	<u>(s)</u>
1-0C-0	120.33	(a)	129 35	(3)	129.21	(s)
ortho	129.55	a a	129.85	à	129.58	ă
oruio	129.02	ä	129.01	ä	128.52	สั
meta	133 38	ä	133.68	a a	133 48	a a
	164.85	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(4)	165 23	(5)
2-0C=0	104.85	(3)			20.88	۵.
inso	128.85	(0)			20.00	(4)
ortho	120.05	ä				
meta	129.90	ä				
mara	123.05					
	160.02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	160.00	(0)	165 79	(8)
J-0C=0	21 61		21 71		105.77	(3)
	21.01	Ŵ	21.71	(q)	129 52	(8)
ipso ortho					130 34	à
OI IIIO					128.83	a a
meta					133 58	a)
	170.00		170 11		170 02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7-00=0	20.02	(3)	21 02	(a) (a)	21 02	(a)
	120.07	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	120.12	<u>- 47</u> -	160 00	<u></u>
8-00=0	108.90	(8)	20.01		100.90	(a) (a)
CH3	170.00	<u></u>	20.01	<u></u>	17.70	<u></u>
11-0C=0	1/0.47	(S)	1/0.28	(8)	1/0.20	(\mathbf{s})
CH3	21.23	(q)	21.52	(q)	<u></u>	<u>(q)</u>

Table 2. ¹³C-Nmr chemical shifts (ppm) for 1, 2 and 3.

Measurements were performed in CDCl₃ at 100 MHz. Multiplicity was in parenthesis. and C-15 as a diabasic acid moiety. Moreover, the signals due to two benzoyl groups (δ 7.78, 7.32 and 7.49; 8 8.09, 7.51 and 7.63) were observed. In the COLOC spectrum, long range couplings of the carbonyl carbon signal at δ 165.02 with the C-1 methine proton signal at δ 6.13 and the aromatic proton signal at δ 7.78 indicated the presence of one benzoyl group at C-1. This benzoyl group gave rise to an unusual diamagnetic effect against acetyl methyl equatorially oriented on C-8. Another benzoyl group must be located at C-2, because the same long range couplings of the carbonyl carbon at δ 164.85 with the C-2 methine proton at δ 5.52 and the aromatic proton at δ 8.09 were observed. The lower chemical shift of C-11 acetyl methyl was considered to be caused by the anisotropic effect of this benzoyl group. These spectroscopic data corroborated the structure of ebenifoline W-I (Figure 1).

Ebenifoline E-I $(2)^{13}$ was an amorphous solid which had the molecular formula C41H47NO17 (m/z 825.2800). In the ¹H-nmr, the presence of euonyminol skeleton⁸⁻¹⁰ as a sesquiterpene moiety was observed as well as that of ebenifoline W-I. But, instead of the wilfordate diester,⁵⁻⁷ an evoninate diester⁸⁻¹⁰ as a diabasic acid moiety was suggested on the basis of the presence of two secondary methyl signals (δ 1.17, J=7.1 Hz, H-10'; δ 1.38, J=7.0 Hz, H-9') and aromatic proton signals of a 2,3-disubstituted pyridine. Both ¹H- and ¹³C-nmr spectra of 2 had great similarities to those of mayteine,¹⁴ euojaponines A and C,¹⁵ possessing C-1 benzoyl group and C-8 acetyl methyl group influenced by its diamagnetic effect. Since ebenifoline E-I contained four acetyl groups and one benzoyl group as indicated by ms, ¹H- and ¹³C-nmr spectral data, it seemed that ebenifoline E-I was an evoninate type alkaloid, *i.e.*, one of acetyl groups in mayteine¹⁴ was replaced by a hydroxyl group which was confirmed by the ir spectrum (3611 cm⁻¹). The position of replacement was easily assigned as at C-2 by the following evidences; there were no long range couplings observed between the C-2 methine proton and any acethyl carbonyl carbon, and three of them had clear correlations with the other methine protons (H-5,7 and 8) in the COLOC spectrum. Furthermore, by the comparison of ¹H-nmr spectra between 2 and mayteine, H-2 methine proton of 2 was shifted upfield about 1.2 ppm than that of mayteine. This also supported the structure of ebenifoline E-I (Figure 1).

Ebenifoline E-II (3)¹⁶ was an amorphous solid had the molecular formula, $C_{48}H_{51}NO_{18}$ (m/z 929.3086), like as ebenifoline W-I. The ¹H-nmr spectrum showed two secondary methyl signals (δ 1.24, J=7.1 Hz, H-10'; δ 1.46, J=7.0 Hz, H-9') which were characteristic of the evoninate diester moiety,⁸⁻¹⁰ two sets of benzoyl, four acetyl methyl and two singlet methyl groups. Its sesquiterpene moiety was easily presumed as euonyminol type,⁸⁻¹⁰ but the position of two benzoyl groups was seemed to be different from those of 1. Compared of the ¹H-nmr data of sesquiterpene moiety of E-II with those of 1, H-1, -2 and -3 methine protons of E-II were shifted upfield about 0.1-0.2 ppm, while H-5 and -6 methine protons were shifted downfield about 0.1-0.2 ppm. It suggested that E-II had a sesquiterpene moiety, whose C-1 or C-2 benzoyl group in 1 was replaced by C-5 acetyl group. This presumption was confirmed clearly by means of HMBC¹¹ spectrum, which showed cross peaks among each methine, aromatic proton and the corresponding benzoyl carbonyl carbon.

In order to determine the absolute configuration of 1, the exciton chirality method¹⁷ was applied for its 1,2dibenzoate system. The cd spectrum exhibited a split cd curve, *i.e.*, positive first Cotton effect at 240 nm ($\Delta \epsilon$ =+22.6) and negative second Cotton effect at 223 nm ($\Delta \epsilon$ =-15.1). Thus the absolute configuration of 1 was determined as shown in Figure 1.

ACKNOWLEDGMENTS

We thank Dr. Flankline Ayala Flores in Herbarium Amazonese U.N.A.P for identification of the plant material.

REFERENCES AND NOTES

- H. Itokawa, O. Shirota, H. Morita, K. Takeya, N. Tomioka, and A. Itai, <u>Tetrahedron Letters</u>, 1990, 31, 6881.
- H. Itokawa, O. Shirota, H. Ikuta, H. Morita, K. Takeya, and Y. Iitaka, <u>Phytochemistry</u>, 1991, 30, 3713.
- 3. F. A. Flores, 'Advances in Economic Botany', Vol. 1, The New York Botanical Garden, 1984, pp. 1-8.
- 4. J. G. Gonzalez, G. D. Monache, F. D. Monache, and G. B. Marini-Bettolo, <u>J. Ethnophamacology</u>, 1982, 5, 73.
- 5. M. Beroza, <u>J. Org. Chem.</u>, 1963, 28, 3562.
- 6. Y. Shizuri, K. Yamada, and Y. Hirata, <u>Tetrahedron Letters</u>, 1973, 741.
- 7. K. Yamada, Y. Shizuri, and Y. Hirata, Tetrahedron, 1978, 34, 1915.

- 8. H. Wada, Y. Shizuri, K. Yamada, and Y. Hirata, <u>Tetrahedron Letters</u>, 1971, 2655.
- 9. K. Sugiura, Y. Shizuri, H. Wada, K. Yamada, and Y. Hirata, <u>Tetrahedron Letters</u>, 1971, 2733.
- 10. Y. Shizuri, H. Wada, K. Sugiura, K. Yamada, and Y. Hirata, <u>Tetrahedron</u>, 1973, 29, 1773.
- 11. A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
- 12. an amorphous solid, mp 222-224°C (EtOH); $[\alpha]_D$ +47.1° (c 0.29, CHCl₃); ir v max/CHCl₃ cm⁻¹ 3444, 1735(m); uv λ max/EtOH nm(log ε) 202(4.55), 229(4.48), 266(3.72).
- 13. an amorphous solid, mp 183-185°C (EtOH); cd λ max/EtOH nm(Δε) 246(+3.3), 227(-3.8); ir ν max/CHCl₃ cm⁻¹ 3611, 3501, 1741(m); uv λ max/EtOH nm(log ε) 201(4.57), 229(4.40), 264(3.73).
- J. R. de Sousa, J. A. Pinheiro, E. F. Ribeiro, E. de. Souza, and J. G. S. Maia, <u>Phytochemistry</u>, 1986, 25, 1776.
- 15. B. H. Han, M. K. Park, J. H. Ryu, J. H. Park, and H. Naoki, *Phytochemistry*, 1990, 29, 2303.
- 16. an amorphous solid, mp 174-177°C (EtOH), $[\alpha]_D$ -13.2° (c 2.77, CHCl₃); ir ν max/CHCl₃ cm⁻¹ 3501, 1747(m); uv λ max/EtOH nm(log ε) 201(4.66), 231(4.60), 2.66(3.77).
- 17 N. Harada and K. Nakanishi, 'Circular Dichroic Spectroscopy Exciton Coupling in Organic Stereochemistry', University Science Bookes, Mill Valley, CA, 1983.

Received, 20th January, 1992