EFFICIENT CATALYTIC FURYLATION OF 2-ACETOXY-5-PYRROLIDONE

Tomihisa Ohta, Sojiro Shiokawa, Eiichiro Iwashita, and Shigeo Nozoe*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

<u>Abstract</u> — 2-Acetoxy-5-pyrrolidone was furylated under a catalytic combination of zinc bromide and chlorotrimethylsilane. The effective catalyst system extremely accelerated the furylation reaction.

In connection to our study on a synthesis of biologically active compounds from 2pyrrolidone derivatives,¹ we required 3-acetoxy-5-pyrrolidone-2-carboxylate (1). Although a nitrile substituent was considered equivalent to a carboxyl, 2-cyanopyrrolidone $(2)^2$ was hardly hydrolyzed to the carboxylate (1) without opening of the pyrrolidone ring. Moreover, when R¹ was hydrogen, cyanation of the acetate (4) gave a complex mixture from which the cyanide (3) was given in low yield. Furyl substituent, however, could be used as an alternative carboxyl equivalent;³ besides, the furan moiety would be transformed to an oxygenated C₄ side chain.⁴ In this communication, we would like to report an efficient furylation of 2-acetoxy-5pyrrolidone (4) with a catalytic combination system of zinc bromide (ZnBr₂) and

^a NaBH4, CH3OH, -15 °C; Ac2O, Py·HClO4. ^b furan, ZnBr2, (CH3)3SiCl, CH3NO2, -15 °C. ^c O3, CH3OH, -78 °C; CH2N2, 0 °C.

Entry	Solvent	Catalyst (equiv.) ^a	Co-catalyst (equiv.) ^a	Temp. °C	Time h	Yield ^b (from 6)	Ratio ^c (<u>trans/cis</u>)	
1	Et ₂ O	BF ₃ (0.1)		0	12	0	_	
2	CH ₂ Cl ₂	BF ₃ (0.8)		0	0.5	20	50/50	
3	CH_2Cl_2	TiCl ₄ (0.1)		0	12	38	58/42	
4	CH_2Cl_2	AlCl ₃ (0.1)		rt ^d	16	21	66/34	
5	CH3NO2	ZnBr ₂ (0.1)	—	rt ^d	12	24	67/33	
6	CH3NO2	ZnBr ₂ (0.01)	(CH ₃) ₃ SiCl (0.05)	rt ^d	0.5	57	67/33	
7	CH3NO2	ZnBr ₂ (0.01)	(CH ₃) ₃ SiCl (0.05)	-15	2	71	67/33	
8	CH_2Cl_2	ZnCl ₂ (0.1)	(CH ₃) ₃ SiCl (0.05)	rt ^d	0.5	54	68/32	

Table	1.	Furylation	of	2-Acetoxy-5-pyrrolidone	(4)
				2 - 12	•	

a Molar equivalent to the imide (6).

^b Yield (%) of the furanolactam (5).

^c Diastereoisomeric ratio.

^d Room temperature.

chlorotrimethylsilane [(CH₃)₃SiCl].

Pyrrolidone diacetate (4) prepared from <u>L</u>-malic acid⁵ was treated with furan under various conditions in the presence of a Lewis acid. As summarized in Table 1, furylation product (5) was obtained after prolonged reaction times with a catalytic amount of Lewis acid, entries 3-5, or in short times accompanying by substantial

decomposition of a reaction product, entry 2. Unexpectedly, it was happened to add cyanotrimethylsilane to the reaction mixture containing furan and ZnBr₂, for which the furylation was extremely accelerated. We then changed the additive to $(CH_3)_3SiCl_1$, and found that the product (5) was given in moderate yield in short times, entries 6-8. The following is illustrative. To the crude acetate $(4)^6$ obtained from malimide (6,2.35 g, 15 mmol) in nitromethane (20 ml) were added ZnBr₂ (33.7 mg, 0.15 mmol), furan (10.9 ml, 150 mmol) and (CH₃)₃SiCl (0.095 ml, 0.75 mmol) at -15 °C. After stirring for 2 h at -15 °C, the reaction mixture was washed with aqueous sodium bicarbonate, and brine, dried (dry MgSO₄) and evaporated. Silica gel chromatography of the residue and elution with hexane/ethyl acetate (1/1) gave 5a (1.52 g, 48% from 6) and 5b (764 mg, 23.2% from 6), respectively.⁷ 2,3-<u>trans</u>-Product (5a), <u>J_{2,3}=0.9</u> Hz, favored to 2,3-cis-pyrrolidone (5b), $J_{2,3}=7.0$ Hz, in a diastereoisomeric ratio of 67:33. The observed acceleration on the furylation reaction implies an enhancement of a catalytic activity of ZnBr₂ by complex formation, such as (CH₃)₃SiCl·ZnBr₂, which may induce a charge separated complex such as 7 prior to the generation of an active iminium ion intermediate (8).8

The furanolactam (5a) was ozonized³ and esterified to afford methyl $(2\underline{S},3\underline{S})$ -3acetoxypyroglutamate (1), mp 130-131 °C, $[\alpha]_D^{23}$ +60.4° (<u>c</u> 1.00, CHCl₃).⁹ Overall yield from the imide (6) was 42%.

In summary, we observed that the furylation of 2-acetoxy-5-pyrrolidone (4) was greatly accelerated with a catalytic combination of ZnBr₂ and (CH₃)₃SiCl. Using this procedure, we have synthesized $(2\underline{S},3\underline{S})$ -3-acetoxypyroglutamate (1) in short steps and high overall yield. The mechanism of the catalytic system with a combination of ZnBr₂ and (CH₃)₃SiCl is now under investigation.

897

REFERENCES AND NOTES

- T. Ohta, A. Hosoi, T. Kimura, and S. Nozoe, <u>Chemistry Lett.</u>, 1987, 2091; T. Ohta, A. Hosoi, and S. Nozoe, <u>Tetrahedron Lett.</u>, 1988, 29, 1177; T. Ohta, T. Kimura, N. Sato, and S. Nozoe, <u>Tetrahedron Lett.</u>, 1988, 29, 4303; T. Ohta, N. Sato, T. Kimura, and S. Nozoe, <u>Tetrahedron Lett.</u>, 1988, 29, 4305.
- 2) W.-J. Koot, R. van Ginkel, M. Kranenburg, H. Hiemstra, S. Louwrier, M. J. Moolenaar, and W. N. Speckamp, <u>Tetrahedron Lett.</u>, 1991, **32**, 401.
- 3) G. Schmid, T. Fukuyama, K. Akasaka, and Y. Kishi, J. Am. Chem. Soc., 1979, 101, 259.
- 4) M. A. Ciufolini, C. W. Hermann, K. H. Whitmire, and N. E. Byrne, <u>J. Am. Chem. Soc.</u>, 1989, 111, 3473.
- A. R. Chamberlin and J. Y. L. Chung, <u>J. Am. Chem. Soc.</u>, 1983, 105, 3653; W. N. Speckamp and H. Hiemstra, <u>Tetrahedron</u>, 1985, 41, 4367.
- 6) Reduction of the malimide (6, 2.35 g, 15 mmol) with sodium borohydride (567 mg, 15 mmol) at -15 °C was followed by acetylation with acetic anhydride (30 ml) and pyridinium perchlorate (268 mg, 1.5 mmol). Because of the lability on silica gel, the acetate (4) was used without purification.
- 7) **5a**: mp 117-118 °C. $[\alpha]_D^{26}$ +65.0° (c 1.15, CHCl₃). δ_H (CDCl₃, 90 MHz) 2.11 (3H, s), 2.34 (1H, dd, <u>J</u>=18.0, 2.0 Hz), 2.93 (1H, dd, <u>J</u>=18.0, 6.5 Hz), 4.74 (1H, d, <u>J</u>=0.9 Hz), 5.34 (1H, ddd, <u>J</u>= 6.5, 2.0, 0.9 Hz), 6.26-6.40 (2H, m), 6.72-6.86 (1H, br), 7.39-7.43 (1H, m). **5b**: mp 138-139 °C. $[\alpha]_D^{24}$ -133.7° (c 1.00, CHCl₃). δ_H (CDCl₃, 90 MHz) 1.85 (3H, s), 2.96 (2H, d, <u>J</u>=7.0 Hz), 5.08 (1H, d, <u>J</u>=7.0 Hz), 5.57 (1H, dt, <u>J</u>=7.0, 7.0 Hz), 6.25-6.40 (2H, m), 6.36-6.51 (1H, br), 7.38-7.43 (1H, m).
- 8) T. V. RajanBabu, J. Org. Chem., 1984, 49, 2083.
- 9) 1: $\delta_{\rm H}$ (CDCl₃, 500 MHz) 2.11 (3H, s), 2.36 (1H, dd, <u>J</u>=17.9, 2.6 Hz), 2.82 (1H, dd, <u>J</u>=17.9, 6.8 Hz), 3.80 (3H, s), 4.26 (1H, d, <u>J</u>=0.9 Hz), 5.46 (1H, ddd, <u>J</u>=6.8, 2.6, 0.9 Hz), 7.33 (1H, br).

Received, 23rd January, 1992

898