Raymond Houssin, Marle-Pierre Vaccher, Jean-Pierre Hénichart, and Daniel Lesieur^{*}

Institut de Chimie Pharmaceutique, Université de Lille II, B.P. 83, 59006 Lille, France

Abstract - The synthesis of various 2-(2,3-dihydro-3-methyl-2-oxobenz[d]oxazol-6-yl)morpholines is reported. It has been demonstrated that 2-hydroxymorpholines or β -hydroxyethytaminomethyl ketones are formed as intermediates as assessed by ir, uv, $1H$ and $13C$ nmr analyses. The configuration of the title compounds was also established and corresponds to an equatorial orientation of the aromatic substituent which is considered as essential for an adrenergic activity.

The 2-arylrnorpholines exhibii pharmacological properties such as muscular relaxation (Flumetramidel), antidepression (Fenmetramide,¹ Viloxazine,² Oxaflozane^{3a,b}), vasoconstriction (Abiadin^{3d}), analgesia (Flumexadol^{3e}) or anorexia (Phendimetrazine4).

They can be considered as semirigid analogues of arylethanolamines; the levels of their adrenergic activity⁵ depend upon parameters such as steric or electronic eflects arising from additional substituents necessary to maintain the rigid conformation or from the orientation of the unshared electron pair of the nitrogen atom.⁶ For instance, it has been shown that **2-(4-nitmphenyl)morpholines** possess a weak **B** adrenergic activity7 and **2-(2.4-dimethoxyphenyl)morpholines** exhibit only α -blocking activity in contrast to their opened counterparts. 8

The study of 6-(2-hydroxyethyl)benz[*d*]oxazol-2(3H)-one derivatives with adrenergic activities⁹ led us to the design of hybrid molecules (68-e) where the skeleton of norepinephrine is modified on the basis of steric and bioisosteric considerations.¹⁰ So. (i) the OH and NH groups are included in a morpholine heterocycle, (ii) the benz[*d*]oxazol-2(3H)one heterocycle is condensed with the phenyl group, (iii) the carbon atom at α -position to the amino function is possibly substituted in order to modulate both the α and β adrenergic activities.¹¹ (iv) the morpholinic nitrogen can be substituted by aikyl groups.

Norepinephrine **2-(2,3-Dihydro-2-oxobenz**[d]oxazol-6-yl)morpholines (6a-e)

RESULTS AND DISCUSSION

The **bis(2-hydroxyethy1)amines** (4). precursors of the 2-aryimorpholines (61, were prepared by two convenient synthetic routes (methods A and B, Scheme) chosen according to the accessibility of the starting materials. The 6-bromoacyl-3**methylbenz[@oxazol-2(3H)-ones** (1) were unequivocally prepared in high yields by acylation of 3-methylbenz[o]oxazoi. 2(3H)-one with the appropriate aliphatic acid chlorides, using the aluminum chloride-dimethylformamide mixture as catalyst.¹² This method was found more general and efficient than the classical one¹³ which involved polyphosphoric acid as catalyst and solvent. This regioselective acylation occurred at C(6), as was ascertained by X-ray diffraction on 6benzoylbenz[*d*]oxazol-2(3H)-one.¹⁴

in method A, the bromoacyl derivatives $(1a,b)$ were condensed with the appropriate benzylamine to afford the corresponding α -amino ketones (2a,b). Reduction with sodium borohydride (coupled with catalytic debenzylation) provided the 2-amino alcohols (3a,b) as previously described.^{9c} The separation of stereoisomers was accomplished by selective crystallization in the case of 3b. The predominant derivative (80% yield) possesses the threo configuration as assessed with ¹H nmr by the vicinal protons coupling constant (J = 10 Hz). Use of ethylene oxide afforded the bis(2hydroxyethyl)amines (4a,b). The final dehydration into 2-arylmorpholines (6a,b) was achieved by aqueous hydrobromic acid catalysis.

In an alternative approach (method B), the α -bromo ketones (1a,b) were reacted with the appropriate alkylethanolamines to give the β -amino ketones (5c,d) whose reduction with sodium borohydride led to the amino diols (4c,d). The vicinal coupling constant evidenced an erythro configuration for 44. Dehydrative cyclization was accomplished as previously mentioned for 6a,b to afford the 2-arylmorpholines (6c,d). All hydroxy ketones were characterised by their **IH** nmr and ir spectra.

Schema

However, it was noted that 5e presents an hydroxyl absorption around 3360 cm⁻¹ and lacks the carbonyl band at 1680 cm^{-1} . Such a characteristic is in favour¹⁵ of a hemiketal form II resulting from the cyclization of the corresponding hydroxy ketone (I). Indeed, if the synthesis of 2-hydroxymorpholines can be unequivocally directed,¹⁶ it is also described¹⁷ that this heterocycle may result from the chain-ring tautomerism with the **p-hydroxyethylarninomethyl** ketones. Such a cyclization is enhanced by different factors inducing an adequate conformation, namely a bulky alkyl group on the nitrogen^{18,19} or on the vicinal carbon, a decrease of the strain produced by the close proximity of the OH and CO functions or to the protonation of the amine.^{15,20} In the case of 5e, the bulky isopropylamino substituent on the nitrogen and the predominent donor effect of the nitrogen of the benz[aloxazole entity (as attested by its preferential electrophilic substitution on C(6)) are determinent to induce the conformation leading to the cyclization.

This hypothesis is supported by the fact that the **6-acyl-3-methylbenz[aloxazol-2(3h?-0ne** uv absorbance at 296 nrn (5c) undergoes a hypsochromic shift (13 nm) and a pronounced decrease of ε_{max} for 5e, as was also noticed by Griffin¹⁷ in a similar case.

Table I. Uv - visible spectral characteristics (λ_{max}, nm) and ϵ (λ_{max}) of 7,^{12a} 5c,e in 50 % aqueous dioxane (v/v)

A definitive denmnstration is given by nmr (Tables It and Ill) : **Se** showed an OH resonance around 5 ppm (broad signal exchangeable with D₂O₁.²¹ instead of a 3 ppm centered one for a primary alcoholic function; the 94.4 ppm resonance, in the range of values currently observed²² for the anomeric carbon of carbohydrates, replaces the 198.3 ppm one characterisitic of the keto carbon of 8.23

It appears that a CH₃ on the nitrogen or on C_{α} is not too bulky to induce a spontaneous cyclization of the keto aminoalcohols (5c,d) which occurs in counterpart with a isopropyl N-substituent as for 5e. The configuration at the asymetric carbon of 5e cannot be deduced from the sequence 5e - \sim 6e which involves the reductive cleavage (NaBH $_{4}$)²⁴ followed by the closure step (HBr medium) implying a secondary carbocation.

Table II. Physical data of compounds 4a-e,Sc-e

Table II. (continued)

a See 4a-e (Scheme) for designation of atoms. ^b Base, solvent CDCl3. ^c Exchangeable with D₂O. ^d Threo isomer. Hydrochloride. 'Base, solvent DMSOd6. **g** Erythro isomer.

Table III. 13 C nmr data (400 MHz) of compounds 5e,8,6a,e in CDCl₃

a See formulae **5e,8** in text for atoms numbering. ^b C(6)-C(8) axial bond.

However, the fact that the C(8) of morpholine cycle experiences a marked shielding (78.9 vs. 94.4 ppm) when comparing **6a** wiih 5e is indicative of the axial position of the phenyl group.25 On an other hand, the coupling constant of 9 Hz between H_a and the vicinal proton H_q is in accordance²⁶ with the equatorial position occupied both by the aromatic and the R_1 substituents for the 2-ary morpholines (6a-e)²⁷ (Table IV). This configuration inversion between 5e and 6e may be explained if we suppose that the cyclization step 4e -> 6e, effected with strong acid, proceeds preferentially via a planar benzyl carbonium ion, as illustrated by the respective stereochemistry of **44** (erythro) and 6d (equatorial aryl and methyl substituents), and favors the thermodynamically more stable conformers.

Table Iv. Physical data of compounds 6a-e

^t Preferential equatorial substitution. ^b Hydrobromide. ^c Base, solvent CDCl3. ^d Exchangeable with D₂O. e Hydrobromide, solvent DMSO-d₆.

EXPERIMENTAL SECTION

Melting points were taken on a Tottoli Büchi 510 apparatus and are uncorrected. The ir spectra were recorded with a Perkin Elmer 1310 spectrophotometer using potassium bromide pellets. The ¹H and ¹³C nmr spectra were recorded on Bruker WP 80 SY and Bruker 400 spectrometers. Chemical shifts are reported in ppm from tetramethyisilane as an internal standard and are given in **S** units.

6-(2-Hydr0xyethylamlnoacetyl)-3-methylbenz[oxazol-2(3H)-one (5c).

A mixture of 1a^{12b} (6.75 g. 25 mmol), acetonitrile (10 ml) and ethanolamine (3.25 g, 50 mmol) was stirred for 1 h at room temperature. The precipitate was collected, washed with ether and dissolved in 1N HCI. After filtration, the solution was made basic (pH 9) with 10% aqueous Na₂CO₃ and the resulting precipitate was collected, washed and recrystallized from ethanol 95% to give 3.75 g (60% yield) of 5c. Ir : 1680, 1770, 3200, 3300. See Table II.

6-[2-(2-Hydroxyethylamlno)proplonyl]-3-methylbenz[d]oxazol-2(3H)-one (56).

lb12a (8.52 g, 30 mmol) was dissolved in 90 ml of hot acetonitrile. After cooling, methylamino ethanol (3.66 g, 60 mmol) was added. The mixture was stirred for 15 h at room temperature. The precipitate was collected, washed with ether, dissolved in 1N HCI. After filtration, the solution was made basic (pH 9) with 10% aqueous Na₂CO₃. The resulting precipitate was collected, washed and recrystallized from ethanol 95% to give 5d (6.4 g, 80 % yield). Ir: 1670, 1470, 3150,3300. See Table Ii.

2-(2,3-DIhydro-3-methyI-2-oxobenz[~oxazol-6-yl)-2-hydroxy-4-lsopropylmorphollne (5e).

1a^{12b} (2.7 g, 10 mmol) was dissolved in 60 ml acetonitrile and isopropylamino ethanol (2.06 g, 20 mmol) was added. The mixture was stirred for 15 h at room temperature. Alter evaporation of acetonitrile under vacuum, the residue was treated with 1N HCI, the mixture was filtered and the filtrate was made basic (pH 9) with 10% aqueous Na₂CO₃. The resulting precipitate was collected, washed with water and recrystallized from cyclohexane to give **5e** (1.6 g, 55% yield). Ir : 3360, 1770. See Table II.

6-[1-Hydroxy-2-(2-hydroxyethylamino)ethyl]-3-methylbenz[d]oxazol-2(3H)-ones.

General procedure for the preparatlon of (4a,b).

The amino alcohol **(3a** or b)9c (I0 mmol) was dissolved in methanol (100 ml). Ethylene oxide (20 mmoi) was bubbled in the solution. The mixture was stirred 8 h at room temperature and then evaporated under vacuum. The residue was recrystallized in the appropriate solvent or transformed into the corresponding base by neutralization (Na₂CO₃) of the aqueous solution. See Table II.

General procedure for the preparatlon of (4c-e).

To a suspension of compounds 5c,d or e (10 mmol) in methanol (100 ml) was added, under stirring at room temperature, sodium borohydride (0.76 g, 20 mmol). The mixture was stirred 4 h at room temperature and then acidified with 6N HCI and evaporated under vacuum. The residue was recrystallired from the appropriate solvent or transformed into the corresponding base as mentioned tor 4a,b. See Table II.

~eneral procedure for the preparatlon of **2-(2,3-Dlhydro-3-methyl-2-oxobenz[dloxazol-6** yl)morphollnes (6a-e).

A mixture of the diols (4a-e) (10 mmol) and 10 ml of 48 % hydrobromic acid was refluxed for 1 h. The solid which precipitated in situ was collected after complete evaporation of the hydrobromic solution, washed with water and recrystallized or transformed into the corresponding base as precedently described. Ir : 1770. 1050-1150. 2900-3050. See Table IV.

REFERENCES AND NOTES

- $\mathbf{1}$. W. F. Gannon and G. I. Poos, U.S. Patent 1967, 3,308,121 (Chem. Abstr., 1967, 67, 32693c).
- $2.$ K. B. Mallion, A. H. Todd, R. W. Turner, J. G. Bainbridge, D. T. Greenwood, J. Madimaveitia, A. R. Somerville, and B. A. Whittle, Nature, 1972, 238, 157.
- ENCES AND NOTES

W. F. Gannon and G. I. Poos, <u>U.S. Patent</u> 1967, 3,308,121 (Chem. Abstr., 1967, 67, 32693c).

K. B. Million, A. H. Todd, R. W. Turner, J. G. Bainbridge, D. T. Greenwood, J. Madimavellia, A. R. Somewille, a W. F. Gannon and G. I. Poos, <u>U.S. Patent</u> 1967, 3,308,121 (Chem. Abstr., 1967, 57, 32693c).
K. B. Miltile, N.H. Todd, R. W. Turner, J. G. Bainbridge, D. T. Greenwood, J. Madinavellia, A. R. Somerville, and
B. A. Whittle, 3. (a) H. C. B. Denber, Ann. Méd. Psychol., 1973, 1, 138. (b) J. Hache, P. Duchêne-Marullaz, G. Streichenberger, L. Simetiere, and M. Leinot, *Thérapie*, 1974, 29, 81. (c) A. Rascol, H. Maurel, J. David, and M. Layani, *Thérapie*, 1974, 29, 95. (d) N. Busch, J. Moleyre, J. Simond, R. Bondivenne, C. Labrid, and G. Dureng, Eur. J. Med., 1976, 11, 201. (e) J. Hache, W. Diamantis, D. Sofia, and G. Streichenberger, Arzneim.-Forsch., 1978, 28, 642.
- $\overline{4}$. D. Dvornik and G. Schilling, J. Med. Chem., 1965, 8, 466.
- 5. A. Basalmo, P. Crotti, A. Lapucci, B. Macchia, F. Macchia, M. Del Tacca, and L. Mazzanti, J. Med. Chem., 1973, 16. 224.
- A. Basalmo, P. Crotti, A. Lapucci, B. Macchi
16, 224.
D. Dijkstra, T. B. A. Mulder, H. Rollema, P.
31, 2178.
A. Basalmo, <u>J. Med. Chem.</u>, 1979, 22, 738.
E. Epifani, A. Lapucci, B. Macchia, F. Macc
Giovannini, <u>J. Med. Chem</u> 6. D. Dijkstra, T. B. A. Mulder, H. Rollema, P. G Tepper. J. Van der Weide, and A. **S.** Horn, J., 1988. 31, 2178.
- 7. A. Basalmo, J. Med. Chem., 1979, 22, 738.
- 8. E. Epifani. A. Lapucci, B. Macchia, F. Macchia, P. Togneni. M. C. Breschi. M. Del Tacca. E. Martinotti, and L.
- 9. (a) D. H. Caignard, C. Lespagnol, D. Lesieur, and N. Busch, European Patent Appl 1984, EP 110,781 (Chem. Abstr., 1984, 101, 171236q). (b) D. H. Caignard, J. Couquelet, D. Lesieur, C. Lespagnol, J. C. Lamar, M.
- H. Aichaoui, I. Lesieur, and J. P. Hénichart, Synthesis, 1990, 679.
H. Aichaoui, I. Lesieur, and J. P. Hénichart, Synthesis, 1990, 679.
D. K. Phillips, Handb. Exp. Pharmacol., 1980, 54, 3. $10.$
- $11.$
- (a) H. Aichaoui, J. H. Poupaert, D. Lesieur, and J. P. Hénichart, Tetrahedron, 1991, 47, 6649. (b) H. Aichaoui, $12.$ D. Lesieur, and J. P. Hénichart, J. Heterocycl. Chem., 1992, 29, 171.
- $13.$ J. P. Bonte, D. Lesieur, C. Lespagnol, and J. C. Cazin, *Eur. J. Med. Chem.*, 1974, 9, 491.
- G. Mairesse, J. C. Boivin, D. J. Thomas, M. C. Bermann, J. P. Bonte, and D. Lesieur, Acta Cryst., 1984, C40, $14.$ 1019.
- $15.$ A. H. Beckett, W. H. Hunter, and P. Kourounakis, J. Pharm, Pharmacol, 1968, 20, Suppl., 218S.
- 16. H. D. Spanagel and E. Müller, 'Methoden der Organischen Chemie', Houben-Weyl, Vol. 6/4, G. Thieme, Stuttgart 1966, pp. 591-604.
- C. E. Griffin and R. E. Lutz, J. Org. Chem., 1956, 21, 1131. $17.$
- $18.$ E. Rekka, S. Retsas, V. Demopoulos, and P. N. Kourounakis, Arch. Pharm. (Weinheim), 1983, 323, 53.
- 19. K. lordanova and D. Dancheo, Farmacija, 1989, 39, 1.
- $20.$ R. E. Lutz and C. E. Griffin. J.Ora., **1960. 25, 928.**
- $21.$ P. **M.** Weintraub, D. R. Meyer, and C. E. Aiman, J., **1980,45,4989.**
- J. B. Stothers. 'Carbon-13 NMR Spectroscopy', Academic Press, London, **1972,** p. **462.** $22.$
- 23. N. Cotelle Thesis, Université de Lille II, 1989.
- The hemiketal form is known to be resistent to reduction by aluminum isopropoxide.²⁰ $24.$
- G. **0.** Rankin, T. N. Riley, and J. C. Murphy, J.Med., **1978,21.460.** $25.$
- (a) **M.** Gelbecke, T. Blondiau, **B.** Kone, G. Lagrange, and R. Grim&, Bull., **1984, 93, 369. (b)** 26. K. Yordanova, D. Dantchev, V. Shvedov, and T. Karanov, Arch. Pharm. (Weinheim), 1990, 323, 41.
- $27.$ L. M. Jackman and S. Sternhell. 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry'. Pergamon Press, Oxford, **1969.** pp. **280-301.**

Received, 25th February, 1992