THERMAL DIMERIZATION OF NORACRONYCINE

Geneviève Baudouin, ^a Sofia Mitaku, ^b Emmanuel Mikros, ^b Alexios-Léandros Skaltsounis, ^a and François Tillequin^{*a}

^a Laboratoire de Pharmacognosie de l'Université René Descartes,
U.R.A. au C.N.R.S. n° 1310, Faculté des Sciences Pharmaceutiques et
Biologiques, 4 Avenue de l'Observatoire, F - 75006 Paris, France
^b Department of Pharmacy, University of Athens,
Panepistimiopolis, Zografou, GR-15771 Athens, Greece

Abstract - Thermal dimerization of the acridone alkaloid noracronycine (2) leads to Diels-Alder adducts (3) and (4), possessing a rearranged structure.

Acronycine (1) is a Rutaceous pyranoacridone alkaloid which exhibits a broad spectrum of antineoplastic activity.¹⁻³ It is easily converted into its O-demethyl derivative, noracronycine (2).⁴ Polymerization and rearrangement reactions of both compounds under acidic conditions have been recently extensively studied.⁵ All the dimers, trimers and polymers obtained involve creation of a single carbon-carbon bond, between the positions 1 and 5 of two different units, sometimes with simultaneous rearrangement.⁵ Nevertheless, the 2,2-dimethylpyran ring of these compounds led us to envisage the possibility of a different way of dimerization, leading to Diels-Alder derived alkaloid dimers. This type of reaction is known in the field of prenylated coumarins and alkaloids ⁶ and has been also studied in the case of

dimethylpyranoquinol-2-ones.^{7,8} We report here the first reaction of this type involving an acridone alkaloid, noracronycine (2).

Noracronycine (2) has been heated in a sealed tube under Ar for 24 h at different temperatures. At 150°C, the starting material was recovered unchanged. At 180°C, two dimers and one trimer could be isolated, but all of them belong to the series previously described by Funayama and Cordell and have been identified with the compounds AB-1, AB-2 and AB-3 of these authors.⁹⁻¹¹ At 210°C, the reaction products were completely different. The racemic dimers which were isolated in 12% overall yield, 3^{12} and 4^{13} , arise from the two possible cyclodimerizations of the rearranged dienic form 5 on the chromene double-bond of norisoacronycine (6), followed by subsequent addition of the non-chelated OH phenolic group to the double-bond of each intermediate form.¹⁴ The isoacronycine derivatives 9.15 involved in this reaction sequence are most probably produced by the previously described cleavage of dimers AB-1 and AB-2.⁹ This statement is in good agreement with the isolation of norisoacronycine (6) itself in 3% yield from the reaction mixture. It most probably explains the moderate overall yield of the dimerization reaction.

The 'linear' structures of **3** and **4** were deduced from the strong correlations observed on the ¹H nmr 2D NOESY spectra between the signals of the N-Me groups and those of H-10, H-12, H-10', and H-12'. In both compounds, a large coupling constant (J=13 Hz) between the signals of H-3 and H-4 accounts for a *trans* relationship of these two protons. A chair conformation of the cyclohexane ring of **3** and **4** is consistent with the ⁴J coupling (3Hz) of H-3'eq and H-13eq which exhibit a W relationship. The ¹H

• CH₃

nmr data of 3 and 4 are closely related to those of paraensidimerin F 16 and vepridimerine E ⁷ which have an equivalent stereochemistry. Cross-peaks between CH3-2eq and H-4' on the 2D NOESY spectrum of 3 and between CH3-2eq and H-13eq on that of 4 agree with their structural differences. In addition, when compared with those of 3, significant differences appear for 4 in the chemical shifts of H-4' and CH3-2ax. They account for the influence of the *peri* OH groups on H-4' and for the shielding effect of the aromatic rings on CH3-2ax in the latter compound.

In conclusion, thermal dimerization of noracronycine (2) has led to Diels-Alder adducts possessing a rearranged structure. This result should prove useful in further studies of this group of antineoplastic acridones and help to establish the structures of new natural Rutaceous alkaloids.

ACKNOWLEDGEMENTS

We thank Prof. M. Koch (Laboratoire de Pharmacognosie, Université Paris V) for his interest in this work.

REFERENCES AND NOTES

- 1. G.H. Svoboda, Lloydia, 1966, 29, 206.
- M. Suffness, and G. A. Cordell, "The Alkaloids", Vol. 25, ed. A. Brossi, Academic Press, New York, 1985, p. 38.
- R. T. Dorr, J. D.Liddil, D. D. Von Hoff, M. Soble, and C. K. Osborne, *Cancer Res.*, 1989, 49, 340.
- 4. R. D. Brown, L. J. Drummond, F. N. Lahey, and W. C. Thomas, Aust. J. Sci. Res., 1949, A2, 622.

- 5. For a recent review on the reactions of acronycine derivatives in acidic medium, see: S. Funayama and G. A. Cordell, *Heterocycles*, 1989, **29**, 815.
- 6. For a review on the dimeric alkaloids of the Rutaceae derived by Diels-Alder addition, see: P. G. Waterman, "Alkaloids : Chemical and Biological Perspectives", Vol. 4, ed. S. W. Pelletier, John Wiley, New York, 1986, p. 331.
- 7. J. F. Ayafor, B. L. Sondengam, J. D. Connoly, and D. S. Rycroft, *Tetrahedron Lett.*, 1985, **26**, 4529
- B. T. Ngadjui, J. F. Ayafor, S. Mitaku, A.-L. Skaltsounis, F. Tillequin, and M. Koch, J. Nat. Prod., 1989, 52, 300.
- 9. S. Funayama, G. A. Cordell, H. Wagner, and H. L. Lotter, J. Nat. Prod., 1984, 47, 143.
- 10. S. Funayama and G. A. Cordell, Planta Med., 1983, 48, 263.
- 11. S. Funayama and G. A. Cordell, J. Nat. Prod., 1985, 48, 536.
- 12. Compound 3: ms (dci, reagent gas: NH3) (m/z): 615 (M+H)⁺; ¹H nmr (CDCl3) & 0.97 (3H, s, CH3-2ax), 1.36 (1H, dd, J=13, 12 Hz, H-13ax), 1.49 (3H, s, CH3-2⁻), 1.85 (3H, s, CH3-2eq), 1.89 (1H, dt, J=13, 3 Hz, H-3'eq), 2.05 (1H, dd, J=13, 2 Hz, H-3'ax), 2.05 (1H, dd, J=13, 2 Hz, H-3), 2.94 (1H, td, J=13, 3 Hz, H-4), 3.73 (1H, dt, J=3, 2 Hz, H-4'), 3.78 (1H, dt, J=12, 3 Hz, H-13eq), 3.72, 3.79 (2x3H, 2s, CH3-11, CH3-11'), 6.22, 6.42 (2x1H, 2s, H-12, H-12'), 7.22, 7.28 (2x1H, 2t, J=8 Hz, H-8, H-8'), 7.40, 7.44 (2x1H, 2d, J=8 Hz, H-10, H-10'), 7.65, 7.67 (2x1H, 2td, J=8, 1 Hz, H-9, H-9'), 8.41, 8.43 (2x1H, 2dd, J=8, 1 Hz, H-7, H-7'), 12.90, 13.00 (2x1H, 2s, D₂O exch., OH-5, OH-5'); Anal. Calcd for C38H34N2O: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.38; H, 5.47, N, 4.53.

- 13. Compound 4: ms (dci, reagent gas: NH3) (m/z): 615 (M+H)+; ¹H nmr (CDCl3) δ: 0.31 (3H, s, CH3-2ax), 1.27 (3H, s, CH3-2'), 1.43 (1H, dd, *J*=13, 12 Hz, H-13ax), 1.54 (3H, s, CH3-2eq), 2.05 (1H, dd, *J*=13, 2 Hz, H-4), 2.10 (1H, dd, *J*=13, 2 Hz, H-3'ax), 2.27 (1H, dt, *J*=13, 3 Hz, H-3'eq), 2.86 (1H, td, *J*=13, 3 Hz, H-3), 3.74 (1H, dt, *J*=12, 3 Hz, H-13eq), 3.69, 3.80 (2x3H, 2s, CH3-11, CH3-11'), 3.82 (1H, dt, *J*=3, 2 Hz, H-4'), 6.14, 6.89 (2x1H, 2s, H-12, H-12'), 7.26 (2H, t, *J*=8 Hz, H-8, H-8'), 7.31, 7.40 (2x1H, 2d, *J*=8 Hz, H-10, H-10'), 7.66, 7.73 (2x1H, 2td, *J*=8, 1 Hz, H-9, H-9'), 8.32, 8.43 (2x1H, 2dd, *J*=8, 1 Hz, H-7, H-7'), 12.90, 14.00 (2x1H, 2s, D20 exch., OH-5, OH-5'); Anal. Calcd for C38H34N20: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.21; H, 5.62, N, 4.59.
- 14. For a discussion on the mechanism of this addition and of the *cis* to *trans* rearrangement of the ring junction of the intermediate forms, see: L. Jurd, R. Y. Wong, and M. Benson, *Aust. J. Chem.*, 1982, **35**, 2505.
- 15. C. S. Oh and C. V. Greco, J. Heterocycl. Chem., 1970, 7, 261.
- 16. L. Jurd, M. Benson, and R. Y. Wong, Aust. J. Chem., 1983, 36, 759.

Received, 20th April, 1992