A NOVEL NITRILE OXIDE PRECURSOR;

2-METHYL-4-NITRO-5(2H)-ISOXAZOLONE

Suguru Higashida, ^a Hiroko Nakashima, ^b Yasuo Tohda, ^b Keita Tani, ^b Nagatoshi Nishiwaki, ^b and Masahiro Ariga *b

a:Department of Industrial Chemistry, Osaka Prefectural College of Technology, Saiwai-cho, Neyagawa 572 Japan b:Department of Chemistry, Osaka Kyoiku University, Minamikawabori-cho, 4-88, Tennoji-ku, Osaka 543 Japan

<u>Abstract</u> — 2-Methyl-4-nitro-5(2<u>H</u>)-isoxazolone (1) was found to be a versatile precursor for a functionalized nitrile oxide by reaction with dipolarophiles giving 3-(N-methylcarbamoyl)isoxazole (2 or 3) derivatives.

In our course of the study on reaction of electron-deficient pyridones with nucleophiles, we obtained 4-nitro-5(2<u>H</u>)-isoxazolone as pyridinium salt by ring transformation of 3,5-dinitro-1-(4-nitrophenyl)-4-pyridone with hydroxylamine. This pyridinium salt was easily converted to 2-methyl-4-nitro-5(2<u>H</u>)-isoxazolone (1) by treating with dimethyl sulfate in good yield. Having a variety of functionalities such as β -nitroenamine, hetero-diene, and α -nitro- γ -lactone in its ring, 1 is anticipated to demonstrate various types of reactivity including ring transformation.

In the present paper we wish to report the utility of the isoxazolone (1) as a versatile precursor for nitrile oxide.

Treatment of 1 with 1.2 equiv. of phenylacetylene in DMF at 100 $^{\circ}$ C in the presence of a small amount of activated charcoal afforded 3-(N-methyl-

carbamoyl)-5-phenylisoxazole $(2a)^2$ in 66% yield after purification with column chromatography on silica gel.

O₂N
$$= \frac{R^1C \equiv CR^2}{O} - \frac{CO_2}{O}$$
 $= \frac{R^1}{R^2} = \frac{CONHMe}{O}$ $= \frac{R^1}{R^3} = \frac{CONHMe}{O}$ $= \frac{R^1}{R^3} = \frac{R^1}{O} = \frac{R^1}{R^3} = \frac{R^1}{N} = \frac{R$

Reaction of 1 with ethyl vinyl ether also gave $3-(\underline{N}\text{-methylcarbamoyl})-5-$ ethoxy-2-isoxazoline (3f). These results suggested that $\underline{N}\text{-methylcarbamoylformonitrile}$ oxide (4), MeNHCOC $\equiv N \rightarrow 0$, was intermediately derived from 1 by decarboxylation. When 1 was heated in ethanol 3,4-bis($\underline{N}\text{-methylcarbamoyl}$) froxane was formed. This fact also supported the formation of 4.5 In order to investigate generality of reactivity of 1, reactions with a various kind of 1,3-dipolarophiles containing acetylenes or olefins were carried out, and the results are summarized in Table 1.

Table 1 Reactions of 1 with dipolarophiles						
Reagent	Reaction Conditions				Products	(yield/%)
	Equiv.	Solv. Ten	np./°C	Time/h		
PhC≡CH	1.2	DMF	100	3	2 a (66)	
Et00CC=CC00Et	3.0	DMF	100	67	2b (61)	
HC≣CCH ₂ OA¢	3.0	DMF	100	3	2c (95)	
PhCH=CHNO	1.2	MeCN	90	6	2 d (10)	3 d (71)
CH ₂ =CHCOOMe	2.2	DMF	100	6.5		3e(89)
CH ₂ =CHOEt	1.2	Pyridine	100	2		3f (69)
MeO-	1.5	DMF	110	6		3g(55)

As shown in Table 1, 1 reacted effectively with both electron-rich and electron-deficient 1,3-dipolarophiles.

The isoxazolone (1) is enough stable on storage and can offer 4 on gentle heating without applying any particular conditions required in conventional methods 6 such as strong base, 7 silver nitrate, 8 uv light, 9 and high temperature. 10

Though, the definitive mechanism for the formation of 4 was not evident, 1 was found to be a new and versatile precursor for a functionalized nitrile oxide.

REFERENCES AND NOTES

- M. Ariga, Y. Tohda, H. Nakashima, K. Tani, Y. Mori, and E. Matsumura, <u>Bull. Chem. Soc. Jpn.</u>, 1991, **64**, 3544.
- 2. 2a: mp 199.0-200.0 °C (ethanol). Ir(Nujol): 3340,1670 cm⁻¹.

 ¹H Nmr(CDCl₃): δ 2.82(3H, d, J=4 Hz), 7.33(1H, s), 7.4-7.7 (3H, m), 7.8-8.1(2H, m), 8.71(1H,broad s).
- 3. 3f: mp 97.0-98.0 °C (hexane). Ir: 3300, 1660, 1600 cm⁻¹.

 ¹H Nmr(acetone-d₆): δ 1.15(3H, t, J=7 Hz), 2.83(2H, d, J=5 Hz), 3.09
 (1H, dd, J=2.5 and 19 Hz), 3.12(1H, dd, J=6 and 19 Hz), 3.7(2H, m),
 5.69(1H, dd, J=2.5 and 6Hz), 7.50(1H, broad s). ¹³C Nmr(CDCl₃): δ 15.0,
 26.0(C-4), 40.0, 64.3, 104.8(C-5), 154.7(C-3), 159.8.
- 4. The authentic sample was obtained by treatment of aqueous methylamine with diethyl 3,4-bis(ethoxycarbonyl)froxane prepared by the method of H. R. Synder and N. E. Boyer, J. Am. Chem. Soc., 1955, 77, 4233.
- C. Grundmann and P. Grunanger, "The Nitrile Oxides", Springer Verlag, Berlin, 1971.
- cf. K. B. G. Trossell, "Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis", Chap. 2, pp. 55-74, VCH Publishers, Inc., New York, 1988.

- 7. C. Grundmann and S. K. Datta, <u>J. Org. Chem</u>., 1969, 34, 2016.
- 8. P. A. Wade, M. K. Pilly, and S. M. Singh, <u>Tetrahedron</u> <u>Let</u>t., 1982, 23, 4563.
- 9. R. D. Garant and J. T. Pinkey, <u>Aust. J. Chem.</u>, 1984, 37, 1231.
- 10. C. Wentrup, B. Gerecht, and H. Briehl, Angew. Chem., 1979, 91, 503.

Received, 12th May, 1992