TRIMETHYLSILYL TRIFLATE-PROMOTED [2+3] DIPOLAR CYCLOADDITION OF NITRONES WITH ALLYLTRIMETHYLSILANE

Dilip D. Dhavale¹ and Claudio Trombini*

Dipartimento di Chimica "G.Ciamician", Università di Bologna, Via Selmi 2, I-40126 Bologna, Italy

Abstract - 3-Alkyl-5-trimethylsilylmethylisoxazolidines are accessible in good yields and at temperatures $\leq 20^{\circ}$ C, by the trimethylsilyl triflate-promoted reaction of allyltrimethylsilane with aliphatic nitrones.

Recently, we have devised a route to isoxazolidines by iodocyclization of O-silylated homoallylic hydroxylamines, prepared by allylation of nitrones with allylic Grignard reagents.² In the course of our further studies in this area, we were particularly interested in a one-pot synthesis of O-trimethylsilyl homoallylic hydroxylamines via trimethylsilyl triflate (TMSOTf) catalyzed reaction of nitrones with This reaction was reported to occur when conjugated nitrones allyltrimethylsilane.³ deriving from benzaldehyde, 3-pyridinecarboxaldehyde and ethyl glyoxylate were allowed to react with allyltrimethylsilane and TMSOTf in CH₂Cl₂ at room temperature. We envisioned to extend a similar intermolecular 1,3-addition process to aliphatic we found that the reaction of *unconjugated* Z-nitrones $(1a-f)^4$ with nitrones, and allyltrimethylsilane, in the presence TMSOTf at $\leq 20^{\circ}$ C in CH₂Cl₂, afforded a mixture of cis- and trans-3-alkyl-5-trimethylsilylmethylisoxazolidines (4), with no traces of homoallylic hydroxylamines. By a formal point of view, we got the same products expected by the classical [2+3] dipolar cycloaddition of nitrones with allyltrimethylsilane, which is reported to take place at temperatures higher than 100°C.⁵ The high reactivity exhibited by aliphatic nitrones in the TMSOTf-promoted cycloaddition reaction could be attributed to the formation of an intermediate Nsilyloxyiminium ion (2), which successively reacts with allyltrimethylsilane to give isoxazolidines (4) via the oxonium ion (3), as depicted in Scheme 1. The reaction of the N-silyloxy iminium ion (2) with the nucleophilic C=C bond of allyltrimethylsilane can occur, in principle, via a stepwise process involving an intermediate β -silyl carbonium ion, or through a concerted mechanism characterized by an asynchronous

transition state. In principle, a catalytic amount of TMSOTf should be adequate, but, in the experiments listed in Table 1, we used 10% molar excess with respect to the nitrone in order to get good conversions in acceptable reaction times. A catalytic effect similar to that exhibited by TMSOTf could also be anticipated in the case of other strong silylating agents. We indeed observed that nitrones, in the presence of allyltrimethylsilane (5 equiv.) and iodine (1.2 equiv.) which give *in situ* trimethylsilyl iodide, gave isoxazolidines (4) in moderate yield (Entry 3).

The results collected in Table 1 show that, when R is a primary or secondary alkyl group, the reactions promoted by TMSOTf afforded ~ 60% yields of *cis*-4 and *trans*-4 (Entries 1, 2 and 4). The sterically demanding pivalaldehyde nitrones (1d-e) showed the lowest reactivity (Entries 5-8), while the α -alkoxy substituent activated nitrone (1f), deriving from *D*-glyceraldehyde, which displayed the highest reactivity among the nitrones examined, affording excellent yields of isoxazolidines at -30°C and in short reaction time (Entry 9).

The diastereomeric cis-4 and trans-4 were analyzed by gas chromatography, and samples of diastereomerically pure isoxazolidines were obtained by preparative liquid chromatography.⁶ The assignment of relative stereochemistry was established by the difference in ¹H nmr (300 MHz) chemical shifts ($\Delta\delta$) of the H4 methylene protons, wherein $\Delta\delta$ for *cis* is higher than $\Delta\delta$ *trans*-isoxazolidines (4)⁷ (see Table 2). Regarding the stereochemical outcome of the cyclization reactions, the results depicted in Table I did not show appreciable diastereoselectivities. Low levels of selectivity in the intermolecular [2+3] dipolar cycloaddition of aldonitrones and monosubstituted alkenes are frequently observed^{5,8} as a consequence of the small energy difference between endo and exo transition states. However it is to be noted that formation of cis-4 was favored by primary R groups (Entries 1,2), while α branching in the R substituent (Entries 4-8) favored the formation of trans-4. In the case of chiral nitrone (1f) (Entry 9) four cyclized products are expected as the faces of nitrone are diastereotopic. Unfortunately, nitrone (1f) did not display an appreciable diastereofacial selectivity⁹ giving four isomers in the ratio 2:1:1:1, as detected by gas chromatography going from the lowest to the highest retention time. The first pair of peaks correspond to two trans products as determined by ${}^{1}H$ nmr analysis of chromatographic fractions enriched in the various isomers.

We are presently studying the extension of the TMSOTf-promoted cycloaddition of nucleophilic alkenes with nitrones as a valuable tool to synthesize the isoxazolidine ring system under mild conditions.

Scheme 1

Table 1. Synthesis of Isoxazolidines 4.ª

Entry		Nitrone 1 R	R '	reaction temp.(°C)	reaction time_(h)	Yield 4 (%)	cis/trans <u>ra</u> tio ^b
1	1 a	CH3	CH ₂ Ph	- 15	42	61	61/39
2	1 b	C ₂ H ₅	CH ₂ Ph	- 15	48	63	62/38
3°	1 b	C ₂ H ₅	CH_2Ph	20	48	25	58/42
4	1 c	(CH3)2CH	CH ₂ Ph	0	48	60	43/57
5	1 d	(CH3)3C	CH ₂ Ph	0	48	40	30/70
6	1 d	(CH3)3C	CH ₂ Ph	20	8	57	35/65
7	1 e	(CH3)3C	CH ₃	0	48	48	20/80
8	1 e	(CH3)3C	CH3	20	6	44	15/85
9	1 f	$\langle \zeta \rangle$	CH ₂ Ph	- 30	3	89	35/65

(a) In a typical procedure, TMSOTf (2.2 mmol) in CH_2Cl_2 (2 ml) was added drop by drop to a solution of nitrone (1) (2 mmol) and allyltrimethylsilane (4 mmol) in dry CH_2Cl_2 (18 ml) cooled at the desired temperature under argon. After stirring for the time reported in the Table 1, the reaction was quenched with 10% aq. NaHCO₃ (3 ml) and extracted with CH_2Cl_2 (3 x 20 ml). Isoxazolidines are purified by flash chromatography using cyclohexane-ethyl acetate (97:3). (b) Determined by gas chromatographic analysis of the crude reaction mixture. (c) Trimethylsilyl iodide used as the promoter.

Table	II.	^{1}H	Nmr	Data	for	Isoxazolidines	(4).
-------	-----	---------	-----	------	-----	----------------	------

Product	1H Nrme (200 MILE CDCL)				
$(R_t)^a$	A MIR (SOU MHZ, CDC13)				
	0, ppm				
cis-4 a	7.45-7.20(m, 5H, ArH), 4.38-4.25(m, 1H, H5), 3.97(d, J = 13.2, 1H, CH2Ph),				
(10.0)	$3.90(d, J = 13.2, 1H, CH_2Ph), 3.20-3.05(m, 1H, H3), 2.53 (ddd, J = 6.7, 6.7, 12.0, 1H, H4), 1.55(1H, H, CH_2Ph), 3.20-3.05(m, 1H, H3), 2.53 (ddd, J = 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7,$				
	12.0, 1H, H4), 1.55(ddd, $J = 6.7, 8.2, 12.0, 1H, H4$), 1.15(d, $J = 6.4, 3H, CH3$),				
	$1.0/(dd, J = 4.0, 14.0, 1H, CH_2Si), 0.88 (dd, J = 8.4, 14.0, 1H, CH_2Si), 0.00(s, 0H, SiMa2)$				
	9H, SIME3).				
Trans-	7.45-7.20(m, 5H, ArH), 4.19-4.08(m, 1H, H5), 3.96(d, J = 13.7, 1H, CH2Ph),				
41 (88)	3.82(d, J = 13.7, 1H, CH2Ph), 2.80-3.05(m, 1H, H3), 2.12-1.87(m, 2H, H4),				
(0.0)	1.15(d, $J = 6.4$, 3H, CH3), 1.09(dd, $J = 5.3$, 14.0, 1H, CH ₂ Si), 0.82 (dd, $J = 9.1$,				
	14.0, 1H, CH ₂ S ₁), 0.00(s, 9H, SiMe ₃).				
$c_{13}-4$ b	7.27-7.05 (m, 5H, ArH), $4.32-4.13$ (m, 1H, H5), 3.90 (d, $J = 12.9$, 1H, CH ₂ Ph),				
(13.0)	$3.72(d, J = 12.9, 1H, CH_2Ph)$, $2.82(quin, J = 7.2, 1H, H_3)$, $2.40 (dt, J = 7.2, 11.9, 1.9)$				
	1H, H4), $1.55-1.20(m, 1H, H4)$, $1.52-1.36$ (m, 2H, CH2), $0.92(dd, J = 6.3, 14.0, 1.52)$				
	1H, CH ₂ Si), $0.72(t, J = 7.4, 3H, CH_3)$, $0.66-0.77$ (m, 1H, CH ₂ Si), $-0.12(s, 9H, CH_2)$				
trans-	7.27-7.05 (m, 5H, ArH), $4.07-3.95$ (m, 1H, H5), 3.84 (d, $J = 12.9$, 1H, CH2Ph),				
4 D (11 A)	$3.72(d, J = 12.9, 1H, CH_2Ph)$, $2.73-2.55(m, 1H, H_3)$, $1.95-1.71$ (m, 2H, H_4),				
(11.4)	1.33-1.19 (m, 2H, CH ₂), 0.95(dd, $J = 4.6$, 13.9, 1H, CH ₂ Si), 0.79(t, $J = 7.4$, 3H,				
	$(H_3), 0.77-0.66 \text{ (m, 1H, CH}_2\text{Si}), -0.12(s, 9\text{H, SiMe}_3).$				
cis-4 c	7.50-7.20(m, 5H, ArH), 4.42-4.28(m, 1H, H5), 4.07(d, J = 13.3, 1H, CH2Ph),				
(11.7)	$3.82(d, J = 13.3, 1H, CH_2Ph)$, $2.76(q, J = 7.5, 1H, H_3)$, 2.43 (ddd, $J = 5.5, 7.5$,				
	12.0, 1H, H4), 1.72-1.60(m, 1H, H4), 1.82-1.55 (m, 1H, CH), 1.06(dd, $J = 6.4$,				
	14.0, 1H, CH ₂ Si), 0.91(d, $J = 6.6$, 3H, CH ₃), 0.85(d, $J = 6.6$, 3H, CH ₃), 0.83(dd, $J = 6.6$, 2H, CH ₃), 0.83(dd, J				
	$=7.8, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).$				
trans-	7.50-7.20(m, 5H, ArH), $4.12-4.00(m, 1H, H5)$, $3.96(d, J = 13.7, 1H, CH2Ph)$,				
4 c	$3.85(d, J = 13.7, 1H, CH_2Ph)$, $2.80-2.68(m, 1H, H_3)$, $2.19-2.07$ (m, 2H, H_4),				
(13.6)	1.82-1.55 (m, 1H, CH), 1.09 (dd, $J = 5.5$, 14.0, 1H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3 H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3 H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3 H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3 H, CH ₂ Si), 0.93 (d, $J = 6.6$, 3 H, 0.95 (d), $J = 6.6$ (d), $J = 6.$				
	CH_3 , 0.90(d, $J = 6.6$, 3H, CH ₃), 0.82(dd, $J = 8.8$, 14, 1H, CH ₂ Si), 0.00(s, 9H, SiMa2)				
	31Me3).				
cis-4 d	7.52-7.21(m, 5H, ArH), 4.42-4.27(m, 1H, H5), 4.12(d, J = 13.3, 1H, CH2Ph),				
(12.8)	3.76(d, J = 13.3, 1H, CH2Ph), $2.88(t, J = 7.9, 1H, H3)$, $2.31 (ddd, J = 5.8, 8.4, 12.7)$				
	12.7, 1H, H4), $1.72-1.60(m, 1H, H4)$, $1.05-0.95(m, 1H, CH_2Si)$, $0.90-0.75(m, 1H, CH_2Si)$, $0.90(-0.75(m, 1H, CH_2Si))$,				
	10, CH251), U.80(S, 9H, CH3), U.00(S, 9H, SiMe3).				
trans-	1.52-7.21 (m, 5H, ArH), $4.10-3.98$ (m, 1H, H5), 4.05 (d, $J = 13.7$, 1H, CH2Ph),				
4 d	5.98(a, $J = 15.7$, 1H, CH2Ph), 2.78(dd, $J = 2.7$, 9.6, 1H, H3), 2.16 (ddd, $J = 2.7$, 5.8, 12.5, 1H, H4), 1.20(h, $J = 0.6$, 10.5				
(12.1)	5.8, 12.5, 1H, H4), 1.82(dt, $J = 9.6$, 12.5, 1H, H4), 1.12(dd, $J = 5.8$, 14.0, 1H, CH, S'), 0.02(-01), CH, S'), 0.02(-01), CH, S'), 0.02(-01), 0.02(-01), 0.02(-01), 0.02(-01)), 0.02(-01), 0.02(-01)), 0.02(-01), 0.02(-01)), 0.02(-01), 0.02(-01)), 0.02(-01), 0.02(-01)), 0.02(-01), 0.02(-01)),				
	CH_{2S1} , $U.92(s, 9H, CH_3)$, $U.82(dd, J = 9.0, 14.0, 1H, CH_2Si)$, $U.00(s, 9H, SiMe_3)$.				

$ \begin{array}{c} (8.2) & (m, 1H, H4), 1.72 - 1.63(m, 1H, H4), 1.20 - 1.05(m, 1H, CH_2Si), 0.86(s, 9H, CH_3), 0.90 - 0.72(m, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \hline trans- 4.02 - 3.85(m, 1H, H5), 2.75(s, 3H, NCH_3), 2.46(dd, J = 3.5, 10.1, 1H, H3), 2.10 \\ (ddd, J = 3.5, 5.6, 12.3, 1H, H4), 1.82(dt, J = 10.1, 12.3, 1H, H4), 1.08(dd, J = 5.6, 14.0, 1H, CH_2Si), 0.92(s, 9H, CH_3), 0.78(dd, J = 9.6, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \hline (r.6) & (r.6) & (r.6) - (r.6) -$	cis-4eb	4.46-4.28(m, 1H, H5), 2.70(s, 3H, NCH ₃), 2.62(t, $J = 6.4$, 1H, H3), 2.34-2.18
$\begin{array}{c} (0.2) \\ (0.90-0.72(m, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \hline trans- \\ 4eb \\ (7.6) \\ (7.5) \\ (7.5$	(8.2)	(m, 1H, H4), 1.72-1.63(m, 1H, H4), 1.20-1.05(m, 1H, CH ₂ Si), 0.86(s, 9H, CH ₃),
$\begin{array}{l} trans-\\ trans-\\ 4.02-3.85(m, 1H, H5), 2.75(s, 3H, NCH_3), 2.46(dd, J = 3.5, 10.1, 1H, H3), 2.10\\ (dd, J = 3.5, 5.6, 12.3, 1H, H4), 1.82(dt, J = 10.1, 12.3, 1H, H4), 1.08(dd, J = 5.6, 14.0, 1H, CH_2Si), 0.92(s, 9H, CH_3), 0.78(dd, J = 9.6, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline (7.6) \\ (10.8) \\ (10.8) \\ (10.8) \\ (10.8) \\ trans-\\ cis-4f^{\rm c} \\ (7.52-7.21(m, 5H, ArH), 4.48-4.38(m, 1H, H5), 4.11(d, J = 12.6, 1H, CH_2Ph), 3.15(dt, J = 4.6, 8.2, 1H, H3), 2.63 (ddd, J = 6.9, 8.2, 12.8, 1H, H4), 1.83 (ddd, J = 4.6, 8.5, 1 2.8, 1H, H4), 1.34(s, 3H, CH_3), 1.32(s, 3H, CH_3), 1.07(dd, J = 5.6, 14.0, 1H, CH_2Si), 0.89(dd, J = 8.7, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline (11.7) \\ cis-4f^{\rm c} \\ (7.52-7.21(m, 5H, ArH), 4.25-3.95(m, 3H, H5,H1',H2'), 4.12(d, J = 13.7, 1H, CH_2Ph), 4.00(d, J = 13.7, 1H, CH_2Ph), 3.80(dd, J = 6.0, 8.4, 1H, H2'), 3.31(q, J = 7.0, 1H, H3), 2.40 (ddd, J = 6.0, 8.0, 12.4, 1H, H4), 1.92-1.70 (m, 1H, H4), 1.36(s, 3H, CH_3), 1.32(s, 3H, CH_3), 1.06(dd, J = 5.9, 12.9, 1H, CH_2Si), 0.87(dd, J = 8.5, 12.9, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- \\ 4f^{\rm ric} \\ (10.2) \\ trans- \\ 7.52-7.21(m, 5H, ArH), 4.36(d, J = 14.0, 1H, CH_2Ph), 4.30-3.88 (m, 3H, H5, H1', H2'), 3.88(d, J = 14.0, 1H, CH_2Ph), 3.71(dd, J = 7.1, 8.1 1H, H2'), 3.04(dd, J = 6.5, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH_3), 1.33(s, 3H, CH_3), 1.05(dd, J = 5.8, 14.0, 1H, CH_2Si), 0.81(dd, J = 8.5, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- \\ 4f^{\rm ric} \\ 4f^{\rm ric} \\ 4f^{\rm ric} \\ (10.2) \\ \hline reas- \\ 7.52-7.21(m, 5H, ArH), 4.32-3.88(m, 5H, H5,1',2',CH_2Ph), 3.62-3.50(m, 1H, H4), 1.35(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline reas- \\ 7.52-7.21(m, 5H, ArH), 4.32-3.88(m, 5H, H5,1',2',CH_2Ph), 3.62-3.50(m, 1H, H4), 1.35(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline$	(0.2)	$0.90-0.72(m, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).$
$\begin{array}{l} \textbf{4eb} \\ \textbf{4eb} \\ \textbf{(ddd, J=3.5, 5.6, 12.3, 1H, H4), 1.82(dt, J=10.1, 12.3, 1H, H4), 1.08(dd, J=5.6, 14.0, 1H, CH_2Si), 0.92(s, 9H, CH_3), 0.78(dd, J=9.6, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \hline \textbf{(r.6)} \\ \textbf{(10.8)} \\ \textbf{(11.7)} \\ (11$	trans-	$4.02-3.85(m, 1H, H5), 2.75(s, 3H, NCH_3), 2.46(dd, J = 3.5, 10.1, 1H, H3), 2.10$
$\begin{array}{l} \textbf{4ec} \\ (7.6) \\ (7.6) \\ (7.6) \\ (5.6) \\ (10.8) \\ (10.6) \\ $	1.a.h	(ddd, J = 3.5, 5.6, 12.3, 1H, H4), 1.82(dt, J = 10.1, 12.3, 1H, H4), 1.08(dd, J
$\begin{array}{rrrr} (7.6) & 0.00(\text{s}, 9\text{H}, \text{SiMe3}). \\ \hline cis-4fc \\ (10.8) & 4.08-3.88(\text{m}, 2\text{H}, \text{H2'}), 3.79(\text{d}, J=12.6, 1\text{H}, \text{CH}_2\text{Ph}), 3.50-3.35(\text{m}, 1\text{H}, \text{H1'}), \\ 3.15(\text{dt}, J=4.6, 8.2, 1\text{H}, \text{H3}), 2.63 (\text{ddd}, J=6.9, 8.2, 12.8, 1\text{H}, \text{H4}), 1.83 (\text{ddd}, J \\ =4.6, 8.5, 1.2.8, 1\text{H}, \text{H4}), 1.34(\text{s}, 3\text{H}, \text{CH}_3), 1.32(\text{s}, 3\text{H}, \text{CH}_3), 1.07(\text{dd}, J=5.6, \\ 14.0, 1\text{H}, \text{CH}_2\text{Si}), 0.89(\text{dd}, J=8.7, 14.0, 1\text{H}, \text{CH}_2\text{Si}), 0.00(\text{s}, 9\text{H}, \text{SiMe}_3). \\ \hline cis-4f^{+c} & 7.52-7.21(\text{m}, 5\text{H}, \text{ArH}), 4.25-3.95(\text{m}, 3\text{H}, \text{H5},\text{H1'},\text{H2'}), 4.12(\text{d}, J=13.7, 1\text{H}, \\ (11.7) & \text{CH}_2\text{Ph}), 4.00(\text{d}, J=13.7, 1\text{H}, \text{CH}_2\text{Ph}), 3.80(\text{dd}, J=6.0, 8.4, 1\text{H}, \text{H2'}), 3.31(\text{q}, J=7.0, 1\text{H}, \text{H3}), 2.40 (\text{ddd}, J=6.0, 8.0, 12.4, 1\text{H}, \text{H4}), 1.92-1.70 (\text{m}, 1\text{H}, \text{H4}), \\ 1.36(\text{s}, 3\text{H}, \text{CH}_3), 1.32(\text{s}, 3\text{H}, \text{CH}_3), 1.06(\text{dd}, J=5.9, 12.9, 1\text{H}, \text{CH}_2\text{Si}), 0.87(\text{dd}, J=8.5, 12.9, 1\text{H}, \text{CH}_2\text{Si}), 0.00(\text{s}, 9\text{H}, \text{SiMe3}). \\ \hline trans- & 7.52-7.21(\text{m}, 5\text{H}, \text{ArH}), 4.36(\text{d}, J=14.0, 1\text{H}, \text{CH}_2\text{Ph}), 4.30-3.88 (\text{m}, 3\text{H}, \text{H5}, \\ \text{H1'}, \text{H2'}), 3.88(\text{d}, J=14.0, 1\text{H}, \text{CH}_2\text{Ph}), 3.71(\text{dd}, J=7.1, 8.1 1\text{H}, \text{H2'}), 3.04(\text{ddd}, J=6.5, 7.7, 9.5, 1\text{H}, \text{H3}), 2.10-1.75 (\text{m}, 2\text{H}, \text{H4}), 1.41(\text{s}, 3\text{H}, \text{CH}_3), 1.33(\text{s}, 3\text{H}, \\ \text{CH}_3), 1.05(\text{dd}, J=5.8, 14.0, 1\text{H}, \text{CH}_2\text{Si}), 0.81(\text{dd}, J=8.5, 14.0, 1\text{H}, \text{CH}_2\text{Si}), \\ 0.00(\text{s}, 9\text{H}, \text{SiMe}_3). \\ \hline trans- & 7.52-7.21(\text{m}, 5\text{H}, \text{ArH}), 4.32-3.88(\text{m}, 5\text{H}, \text{H5}, 1', 2', \text{CH}_2\text{Ph}), 3.62-3.50(\text{m}, 1\text{H}, \\ 1.35(\text{s}, 3\text{H}, \text{CH}_3), 1.30(\text{s}, 3\text{H}, \text{CH}_3), 1.17(\text{dd}, J=6.3, 14.2, 1\text{H}, \text{CH}_2\text{Si}), 0.90(\text{dd}, J=8.5, 14.2, 1\text{H}, \text{CH}_2\text{Si}), 0.90(\text{dd}, J=6.3, 14.2, 1\text{H}, \text{CH}_2\text{Si}), 0.90(\text{dd}, J=8.5, 14.2, 1\text{H}, \text{CH}_2\text{Si}), 0.90(\text{dd}, J=6.3, 14.2, 1\text{H}, \text{CH}_2\text{Si}$	40	$=5.6, 14.0, 1H, CH_2Si$, $0.92(s, 9H, CH_3), 0.78(dd, J = 9.6, 14.0, 1H, CH_2Si)$,
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(7.6)	0.00(s, 9H, SiMe3).
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	cis-4fc	7.52-7.21(m, 5H, ArH), 4.48-4.38(m, 1H, H5), 4.11(d, J = 12.6, 1H, CH2Ph),
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(10.8)	4.08-3.88(m, 2H, H2'), 3.79(d, J = 12.6, 1H, CH ₂ Ph), 3.50-3.35(m, 1H, H1'),
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(10.0)	3.15(dt, J =4.6, 8.2, 1H, H3), 2.63 (ddd, J =6.9, 8.2, 12.8, 1H, H4), 1.83 (ddd, J
$\begin{array}{c} 14.0, 1H, CH_{2}Si), 0.89(dd, J = 8.7, 14.0, 1H, CH_{2}Si), 0.00(s, 9H, SiMe_{3}).\\ \hline cis-4f^{\circ}c \\ (11.7) \\ \hline cH_{2}Ph), 4.00(d, J = 13.7, 1H, CH_{2}Ph), 3.80(dd, J = 6.0, 8.4, 1H, H2'), 3.31(q, J) \\ = 7.0, 1H, H3), 2.40 (ddd, J = 6.0, 8.0, 12.4, 1H, H4), 1.92-1.70 (m, 1H, H4), 1.36(s, 3H, CH_{3}), 1.32(s, 3H, CH_{3}), 1.06(dd, J = 5.9, 12.9, 1H, CH_{2}Si), 0.87(dd, J) \\ = 8.5, 12.9, 1H, CH_{2}Si), 0.00(s, 9H, SiMe_{3}).\\ \hline trans- \\ f^{\circ}c \\ (10.2) \\ \hline trans- \\ f^{\circ}df^{\circ}c \\ (10.2) \\ \hline trans-$		=4.6, 8.5,1 2.8, 1H, H4), 1.34(s, 3H, CH ₃), 1.32(s, 3H, CH ₃), 1.07(dd, $J = 5.6$,
$\begin{array}{c} cis-4f^{*c} \\ (11.7) \\ $		14.0, 1H, CH_2Si), 0.89(dd, $J = 8.7$, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe ₃).
(11.7) CH ₂ Ph), 4.00(d, $J = 13.7$, 1H, CH ₂ Ph), 3.80(dd, $J = 6.0$, 8.4, 1H, H2'), 3.31(q, $J = 7.0$, 1H, H3), 2.40 (ddd, $J = 6.0$, 8.0, 12.4, 1H, H4), 1.92-1.70 (m, 1H, H4), 1.36(s, 3H, CH ₃), 1.32(s, 3H, CH ₃), 1.06(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 8.5$, 12.9, 1H, CH ₂ Si), 0.00(s, 9H, SiMe ₃). trans- trans- 4f''c H1', H2'), 3.88(d, $J = 14.0$, 1H, CH ₂ Ph), 3.71(dd, $J = 7.1$, 8.1 1H, H2'), 3.04(ddd, $J = 6.5$, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH ₃), 1.33(s, 3H, CH ₃), 1.05(dd, $J = 5.8$, 14.0, 1H, CH ₂ Si), 0.81(dd, $J = 8.5$, 14.0, 1H, CH ₂ Si), 0.00(s, 9H, SiMe ₃). trans- 4f''c H1', H2'), 3.20-3.10(m, 1H, H3), 2.45-2.35 (m, 1H, H4), 1.91-1.62(m, 1H, H4), 1.35(s, 3H, CH ₃), 1.30(s, 3H, CH ₃), 1.17(dd, $J = 6.3$, 14.2, 1H, CH ₂ Si), 0.90(dd, $J = 8.5$, 14.2, 1H, CH ₂ Si), 0.00(s, 9H, SiMe ₃).	cis-4f ^{+c}	7.52-7.21(m, 5H, ArH), $4.25-3.95(m, 3H, H5,H1',H2')$, $4.12(d, J = 13.7, 1H, J)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(11.7)	CH ₂ Ph), $4.00(d, J = 13.7, 1H, CH2Ph)$, $3.80(dd, J = 6.0, 8.4, 1H, H2')$, $3.31(q, J)$
$\begin{array}{rl} 1.36(s, 3H, CH_3), 1.32(s, 3H, CH_3), 1.06(dd, J = 5.9, 12.9, 1H, CH_2Si), 0.87(dd, J = 8.5, 12.9, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- 7.52-7.21(m, 5H, ArH), 4.36(d, J = 14.0, 1H, CH_2Ph), 4.30-3.88 (m, 3H, H5, H1', H2'), 3.88(d, J = 14.0, 1H, CH_2Ph), 3.71(dd, J = 7.1, 8.1 1H, H2'), 3.04(ddd, J = 6.5, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH_3), 1.33(s, 3H, CH_3), 1.05(dd, J = 5.8, 14.0, 1H, CH_2Si), 0.81(dd, J = 8.5, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- 7.52-7.21(m, 5H, ArH), 4.32-3.88(m, 5H, H5,1',2',CH_2Ph), 3.62-3.50(m, 1H, H2'), 3.20-3.10(m, 1H, H3), 2.45-2.35 (m, 1H, H4), 1.91-1.62(m, 1H, H4), 1.35(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- 4f^{***}c (10.6) = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- 5f^{**}c (10.6) = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).\\ \hline trans- 6f^{**}c (10.6) = 100000000000000000000000000000000000$	(11.7)	=7.0, 1H, H3), 2.40 (ddd, $J = 6.0, 8.0, 12.4, 1H, H4$), 1.92-1.70 (m, 1H, H4),
$=8.5, 12.9, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).$ $trans-$ $4f^{**c}$ (10.2) $T.52-7.21(m, 5H, ArH), 4.36(d, J = 14.0, 1H, CH_2Ph), 4.30-3.88 (m, 3H, H5, H1', H2'), 3.88(d, J = 14.0, 1H, CH_2Ph), 3.71(dd, J = 7.1, 8.1 1H, H2'), 3.04(ddd, J = 6.5, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH_3), 1.33(s, 3H, CH_3), 1.05(dd, J = 5.8, 14.0, 1H, CH_2Si), 0.81(dd, J = 8.5, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).$ $trans-$ $4f^{**c}$ (10.6) $T.52-7.21(m, 5H, ArH), 4.32-3.88(m, 5H, H5,1',2', CH_2Ph), 3.62-3.50(m, 1H, H2'), 3.20-3.10(m, 1H, H3), 2.45-2.35 (m, 1H, H4), 1.91-1.62(m, 1H, H4), 1.35(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3).$		1.36(s, 3H, CH ₃), 1.32(s, 3H, CH ₃), 1.06(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 12.9, 1H, CH ₂ Si), 0.87(dd, $J = 5.9$, 1S, 1S, 1S, 1S, 1S, 1S, 1S, 1S, 1S, 1S
$\begin{array}{r} trans-\\ f^{\prime\prime} c \\ (10.2) \\ trans-\\ f^{\prime\prime} c \\ (10.2) \\ trans-\\ f^{\prime\prime} c \\ (10.2) \\ trans-\\ (10.6) \\ trans-\\ f^{\prime\prime} c \\ (10.6) \\ trans-\\ (10.6) \\ trans-\\ 1.552-7.21(m, 5H, ArH), 4.36(d, J = 14.0, 1H, CH_2Ph), 3.71(dd, J = 7.1, 8.1 1H, H2'), 3.04(ddd, J = 6.5, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH_3), 1.33(s, 3H, CH_3), 1.05(dd, J = 5.8, 14.0, 1H, CH_2Si), 0.81(dd, J = 8.5, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ trans-\\ trans-\\ 1.55(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \end{array}$		=8.5, 12.9, 1H, CH ₂ Si), 0.00(s, 9H, SiMe ₃).
$\begin{array}{l} \textbf{4f^{\prime\prime}c} \\ \textbf{(10.2)} \\ \textbf{H1', H2'), 3.88(d, J = 14.0, 1H, CH_2Ph), 3.71(dd, J = 7.1, 8.1 1H, H2'), 3.04(ddd, J = 6.5, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH_3), 1.33(s, 3H, CH_3), 1.05(dd, J = 5.8, 14.0, 1H, CH_2Si), 0.81(dd, J = 8.5, 14.0, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \hline trans- \\ \textbf{4f^{\prime\prime\prime}c} \\ \textbf{(10.6)} \\ \end{array} \\ \begin{array}{l} \textbf{7.52-7.21(m, 5H, ArH), 4.32-3.88(m, 5H, H5,1',2',CH_2Ph), 3.62-3.50(m, 1H, H2'), 3.20-3.10(m, 1H, H3), 2.45-2.35 (m, 1H, H4), 1.91-1.62(m, 1H, H4), 1.35(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \\ \end{array}$	trans-	7.52-7.21(m, 5H, ArH), 4.36(d, J = 14.0, 1H, CH2Ph), 4.30-3.88 (m, 3H, H5,
$ \begin{array}{c} \textbf{(10.2)} & J = 6.5, \ 7.7, \ 9.5, \ 1H, \ H3), \ 2.10^{-1.75} \ (m, \ 2H, \ H4), \ 1.41(s, \ 3H, \ CH_3), \ 1.33(s, \ 3H, \\ CH_3), \ 1.05(dd, \ J = 5.8, \ 14.0, \ 1H, \ CH_2Si), \ 0.81(dd, \ J = 8.5, \ 14.0, \ 1H, \ CH_2Si), \\ \hline 0.00(s, \ 9H, \ SiMe_3). \\ \hline trans- \\ \textbf{4f^{'''c}} \\ \textbf{4f^{'''c}} \\ \textbf{(10.6)} \\ \end{array} \\ \begin{array}{c} \textbf{7.52} - 7.21(m, \ 5H, \ ArH), \ 4.32^{-3.88}(m, \ 5H, \ H5,1',2', CH_2Ph), \ 3.62^{-3.50}(m, \ 1H, \\ H2'), \ 3.20^{-3.10}(m, \ 1H, \ H3), \ 2.45^{-2.35} \ (m, \ 1H, \ H4), \ 1.91^{-1.62}(m, \ 1H, \ H4), \\ 1.35(s, \ 3H, \ CH_3), \ 1.30(s, \ 3H, \ CH_3), \ 1.17(dd, \ J = 6.3, \ 14.2, \ 1H, \ CH_2Si), \ 0.90(dd, \ J = 8.5, \ 14.2, \ 1H, \ CH_2Si), \ 0.90(dd, \ J = 8.5, \ 14.2, \ 1H, \ CH_2Si), \ 0.00(s, \ 9H, \ SiMe_3). \end{array}$	AF! C	H1', H2'), $3.88(d, J = 14.0, 1H, CH_2Ph)$, $3.71(dd, J = 7.1, 8.1 1H, H2')$, $3.04(ddd, J = 7.1, 8.1 H, H2')$, $3.04(ddd, J = 7.1 H, H2')$, $3.04(ddd, J = 7.1 H, H2')$, $3.04(ddd, J = 7.1 H, H2')$, $3.04(ddd,$
$\begin{array}{c} (10.2) \\ (10.2) \\ CH_3), \ 1.05(dd, \ J=5.8, \ 14.0, \ 1H, \ CH_2Si), \ 0.81(dd, \ J=8.5, \ 14.0, \ 1H, \ CH_2Si), \\ 0.00(s, \ 9H, \ SiMe_3). \\ \hline trans- \\ f^{\prime\prime\prime}c \\ f^{\prime\prime\prime}c \\ (10.6) \\ \end{array}$	(10.0)	J = 6.5, 7.7, 9.5, 1H, H3), 2.10-1.75 (m, 2H, H4), 1.41(s, 3H, CH ₃), 1.33(s, 3H,
$\begin{array}{rl} 0.00(s, 9H, SiMe_3).\\ \hline trans.\\ 4f^{\prime\prime\prime\prime}c\\ (10.6)\end{array} \begin{array}{l} 7.52-7.21(m, 5H, ArH), \ 4.32-3.88(m, 5H, H5,1',2',CH2Ph), \ 3.62-3.50(m, 1H, H2'), \ 3.20-3.10(m, 1H, H3), \ 2.45-2.35\ (m, 1H, H4), \ 1.91-1.62(m, 1H, H4), \ 1.35(s, 3H, CH_3), \ 1.30(s, 3H, CH_3), \ 1.17(dd, \ J=6.3, \ 14.2, \ 1H, \ CH_2Si), \ 0.90(dd, \ J=8.5, \ 14.2, \ 1H, \ CH_2Si), \ 0.00(s, 9H, \ SiMe_3). \end{array}$	(10.2)	CH ₃), 1.05(dd, $J = 5.8$, 14.0, 1H, CH ₂ Si), 0.81(dd, $J = 8.5$, 14.0, 1H, CH ₂ Si),
$\begin{array}{c} trans.\\ \textbf{4f^{\prime\prime\prime}c}\\ \textbf{(10.6)}\end{array} \begin{array}{c} 7.52-7.21(\text{m}, 5\text{H}, \text{ArH}), \ 4.32-3.88(\text{m}, 5\text{H}, \text{H5,1',2',CH2Ph}), \ 3.62-3.50(\text{m}, 1\text{H}, \text{H2}), \ 3.20-3.10(\text{m}, 1\text{H}, \text{H3}), \ 2.45-2.35 \ (\text{m}, 1\text{H}, \text{H4}), \ 1.91-1.62(\text{m}, 1\text{H}, \text{H4}), \ 1.35(\text{s}, 3\text{H}, \text{CH}_3), \ 1.30(\text{s}, 3\text{H}, \text{CH}_3), \ 1.17(\text{dd}, J = 6.3, 14.2, 1\text{H}, \text{CH}_2\text{Si}), \ 0.90(\text{dd}, J = 8.5, 14.2, 1\text{H}, \text{CH}_2\text{Si}), \ 0.00(\text{s}, 9\text{H}, \text{SiMe}_3). \end{array}$		0.00(s, 9H, SiMe3).
$\begin{array}{c c} \textbf{4f}^{111c} \\ \textbf{(10.6)} \end{array} \begin{array}{c} \text{H2'}, \ 3.20\text{-}3.10(\text{m}, \ 1\text{H}, \ \text{H3}), \ 2.45\text{-}2.35 \ (\text{m}, \ 1\text{H}, \ \text{H4}), \ 1.91\text{-}1.62(\text{m}, \ 1\text{H}, \ \text{H4}), \\ 1.35(\text{s}, \ 3\text{H}, \ \text{CH}_3), \ 1.30(\text{s}, \ 3\text{H}, \ \text{CH}_3), \ 1.17(\text{dd}, \ J=6.3, \ 14.2, \ 1\text{H}, \ \text{CH}_2\text{Si}), \ 0.90(\text{dd}, \ J \\ = 8.5, \ 14.2, \ 1\text{H}, \ \text{CH}_2\text{Si}), \ 0.00(\text{s}, \ 9\text{H}, \ \text{SiMe}_3). \end{array}$	trans-	7.52-7.21(m, 5H, ArH), 4.32-3.88(m, 5H, H5,1',2',CH2Ph), 3.62-3.50(m, 1H,
(10.6) $\begin{vmatrix} 1.35(s, 3H, CH_3), 1.30(s, 3H, CH_3), 1.17(dd, J = 6.3, 14.2, 1H, CH_2Si), 0.90(dd, J = 8.5, 14.2, 1H, CH_2Si), 0.00(s, 9H, SiMe_3). \end{vmatrix}$	Afttic	H2'), 3.20-3.10(m, 1H, H3), 2.45-2.35 (m, 1H, H4), 1.91-1.62(m, 1H, H4),
(10.0) =8.5, 14.2, 1H, CH ₂ Si), 0.00(s, 9H, SiMe ₃).		1.35(s, 3H, CH ₃), 1.30(s, 3H, CH ₃), 1.17(dd, J =6.3, 14.2, 1H, CH ₂ Si), 0.90(dd, J
	(10.0)	=8.5, 14.2, 1H, CH ₂ Si), 0.00(s, 9H, SiMe ₃).

(a) Retention times (R_t) are given in min and refer to isothermal analyses performed at 150°C, unless otherwise stated, with a 30 m Supelcowax capillary column (0.25 μ m film thickness) using a 2.5 ml/min hydrogen flow. (b) Isothermal analysis at 80°C.

(c) Numbering of isoxazolidines (4f) is given as in Structure A. The nmr spectra refer to chromatographic $(CH_3)_3Si_4$ fractions enriched in the given isomer. The *cis-trans* descriptors refer to the stereochemistry of the isoxazolidine ring. The relative stereochemistry of C1'

and C3 could not be determined by nmr spectroscopy in the case of trans-4f'' and 4f''', while, on the basis of previous findings in our laboratory,¹⁰ we can assign the (3S) configuration to *cis-4f* and the (3R) configuration to *cis-4f'*.

ACKNOWLEDGEMENTS

We thank the Fondazione "G. Marconi " and TPV Materie Plastiche for awarding a fellowship to DDD, and the Italian C. N. R. (Progetto Finalizzato Chimica Fine 2) for financial support.

REFERENCES

- 1. 'Visiting Scientist' from Department of Chemistry, University of Poona, Pune 411 007, India.
- 2. F. Mancini, M. G. Piazza, and C. Trombini, J. Org. Chem., 1991, 56, 4246.
- 3. P. G. M. Wuts and M. G. Jung, J. Org. Chem., 1988, 53, 1957.
- 4. Nitrones (1a-f) were prepared according to R. M. Coates and C. H. Cummins, J. Org. Chem., 1986, 51, 1383, and were configurationally pure by NOEDS: see P. DeShong, C. M. Dicken, R. R. Staib, A. J. Freyer and S. M. Weinreb, J. Org. Chem., 1982, 47, 4397. Analytical data for 1f: mp 85-7°C; [α]²⁰D +99° (c = 1, CHCl₃).¹H Nmr (300 MHz, CDCl₃) δ 7.41(s, 5H, ArH), 6.85(d, J =4.7, 1H, H1), 5.16(ddd, J =7.0, 5.8, 4.7, 1H, H2), 4.88(s, 2H, NCH₂Ph), 4.40(dd, J =8.6, 7.0, 1H, H3), 3.89(dd, J =8.6, 5.8, 1H, H3), 1.41(s, 3H, CH₃), 1.37(s, 3H, CH₃). ¹³C Nmr δ 139.0, 132.1(C1), 129.4, 129.2, 129.0, 109.8(OCO), 72.0(NCH₂Ph), 69.0(C2), 67.8(C3), 26.2(CH₃), 24.9(CH₃).
- (a) S. Niwayama, S. Dan, Y. Inouye, and H. Kakisawa, Chem. Lett., 1985, 957. (b)
 A. Hosomi, H. Shoji, and H. Sakurai, Chem. Lett., 1985, 1049. (c) P. DeShong, J. M. Leginus, and S. W. Lander, Jr., J. Org. Chem., 1986, 51, 574. (d) P. DeShong, W. Li, J. W. Kennington, Jr., and H. L. Ammon, J. Org. Chem., 1991, 56, 1364.
- 6. Separations performed on silica gel columns using a Waters Delta 4000 System. Nmr and mass spectra were consistent with the assigned structures.
- 7. C. Belzecki and I. Panfil, J. Org. Chem., 1979, 44, 1212.
- 8. P. Grünanger and P. Vita-Finzi, 'Heterocyclic Compounds,' Vol. 49, ed. by E. C. Taylor, Wiley, New York, 1991, pp. 686 710.
- An analogous lack of diastereofacial selectivity was reported for the cycloaddition of nitrone (1f) with vinylene carbonate: P. DeShong, C. M. Dicken, J. M. Leginus, and R. R. Whittle, J. Am. Chem. Soc., 1984, 106, 5598.
- 10. We are studying for other purposes a series of molecules having structures analogous to *cis*-4f, where the (CH3)3SiCH2 group is replaced by I, N3 and CH3OCO, and we invariably find that, when C3 has the (S) configuration, the phenyl ring shields the proton H1', while, when C3 is (R), the phenyl ring shields one of the H2' protons. D. D. Dhavale, L. Gentilucci, M. G. Piazza, and C. Trombini, *Liebigs Ann. Chem.* in press.

Received, 30th June, 1992

2258