REGIOSELECTIVE BROMINATION OF METHOXY DERIVATIVES OF ETHYL INDOLE-2-CARBOXYLATE [SYNTHETIC STUDIES OF INDOLES AND RELATED COMPOUNDS. XXX¹]

Masanobu Tani, Hiroyo Ikegami, Mayumi Tashiro, Tetsuji Hiura, Hiroko Tsukioka, Chiaki Kaneko, Toshiko Notoya, Mikiko Shimizu, Masahiko Uchida, Yoshiyuki Aida, Yuusaku Yokoyama, and Yasuoki Murakami^{*} School of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274, Japan

Abstract - Bromination of ethyl methoxyindole-2-carboxylates (1) with bromine in acetic acid proceeded on the benzene moiety of 1, whereas the reaction of 1 with pyridinium bromide perbromide in pyridine or <u>N</u>-bromosuccinimide in dimethylformamide gave ethyl 3-bromo-methoxyindole-2-carboxylates (2).

Bromination is one of the fundamental reactions in indole chemistry. Although, bromination usually proceeds at the C_3 -position,² situation is not the same in methoxyindoles as shown in Scheme 1, because electrondonating group on benzene moiety tends to direct the bromine toward the benzene moiety. Indeed, bromination of ethyl 5-methoxyindole-2-carboxylate (**1b**) with bromine in acetic acid was reported to occur³ on the C_4 position rather than the C_3 -position. In other words C_3 -bromination is not easy in methoxyindoles in usual cases, although the C_3 -bromination

сн ₃ 0			Br ⁺	$ \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	+ сн ₃ о		$ \begin{array}{cccc} & \text{Br} & \text{Br} \\ & & \text{Br} & \text{COOC}_2 H_5 \\ & & \text{H} & \text{COOC}_2 H_5 \\ & & \text{H} & \text{H} & \text{H} \\ & & \text{H} & \text{H} & \text{H} \\ & & \text{H} & \text{H} & \text{H} & \text{H} \\ & & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ & & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ & & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ & & \text{H} \\ & & \text{H} & \text$
Entry		Starting	Reagent	Reaction		Products (%)	
(serie	es)	Material		Conditions	3-Br	Other Mono-	Di-Br-
		(1)			(2)	Br-(3)	(4)
1 (;	a)	4-СН ₃ 0	А	5°C,108 min	0%	7-Br(58%)	5,7-di-Br(20%)
		(1 a)	В	0°C, 22 min	76%	(0%)	3,7-di-Br(14%)
			С	0°C, 30 min	70%	(0%)	3,7-di-Br(12%)
2 (1	b)	5-сн ₃ 0-	A	r.t., 1 h	2%	4-Br(78%)	3,4-di-Br(17%)
		(1b)					3,6-di-Br(2%)
			в	0°C, 37 min	88%	(0%)	
· ·			С	0°C, 30 min	94%	(0%)	
3 (C)	6-СН ₃ 0-	A*,4	r.t., 20 min	13%	5-Br(26%)	3,5-di-Br(8%)
		(1c)				7-Br(13%)	3,7-di-Br(13%)
			В	0°C, 30 min	83%	(0%)	
			С	0°C,110 min	93%	(0%)	
4 (d)	7-Сн ₃ 0-	A	r.t., 36 min	0%	4-Br(84%)	
		(1d)	в	0°C, 30 min	88%	(0%)	3,4-di-Br(5%)
			с	0°C, 30 min	87%	(0%)	3,4-di-Br(10%)
5 (e)	4,7-di-	A	r.t., 40 min	<1%	5-Br(62%)	3,5-di-Br(31%)
		CH ₃ 0-(1e)				6-Br(4%)	
			В	r.t., 2 h	97%	(0%)	
6 (:	f)	4,6-di-	в*	60°C, 30 min	48	7-Br(25%)	3,7-di-Br(4%)
		CH ₃ O-(1f)					

Table I. Results for Bromination of Methoxyindoles (1)

Reagent; A:Br₂ in AcOH, B:Pyridinium bromide perbromide in pyridine, C:NBS in DMF

15°C, 10 min

0°C, 10 min

96%

98

(0%)

(0%)

r.t.;room temterature

(1g)

7 (g) 7-TsO-

*) Starting material was recovered; (c):16%, (f):21%.

Α

в

becomes necessary sometimes. We report now a regioselective bromination of methoxy derivatives of ethyl indole-2-carboxylate. At first the 5-methoxyindole (1b) was treated with bromine in acetic acid (Reagent A). This reaction gave the 4-bromoindole (3b) mainly, accompanied with the 3,4- (4b-1) and 3,6-dibromoindole (4b-2) as by-products, as shown in Entry 2 in Table I. The formation of 3b with this reagent had been expected by the result of Kruse.³ They proposed the mechanism that kinetically introduced C_3 -bromine atom rearranged to the C_4 -position moderately activated by the C_5 -methoxy group, as it was reversible in the presence of bromide ion in acidic media. This can be visualized as in Scheme 2. The generation of C_3 -protonated intermediate (5) is the key

This mechanism suggests that the 3-bromoindole could be prepared in nonacidic media or under the condition in the absence of bromide ion. Thus, the reaction with pyridinium bromide perbromide in pyridine (Reagent B) was found to give only the 3-bromoindole (2b), which was stable under this non-acidic condition. The reaction with <u>N</u>-bromosuccinimide (NBS) in dimethylformamide (DMF) (Reagent C) gave the same result with that of Reagent B. These results develop a good method for preparation of 3-bromo-methoxyindole.

Thus, several other methoxy indoles (1a,c,d) and dimethoxy indoles (1e,f) were treated with 1.1-1.3 equivalents of these three kinds of brominating reagents. The results are shown in Table I.

Structure determination of brominated products from monomethoxyindoles (1a-d) was made without difficulty by means of ¹H-nmr spectroscopy. The C₃-bromine was easily identified by disappearance of C₃-H of 1, which generally appeared as a doublet with a small coupling constant and changed to a singlet on addition of D₂O. The position of bromine substituted on the benzene moiety was determined by means of coupling pattern of remained two protons and/or NOE technique. On the other hand, the position of bromine on the benzene moiety of dimethoxyindoles (le and lf) could not be identified till the shift reagent [tris(dipivaloylmethanato)europium][Eu(dpm)₃] was used in 1 H-nmr measurement.⁵

Reagent A gave generally the product brominated on benzene moiety with high regioselectivity in every case of methoxyindoles except for the 6methoxyindole (1c). The brominated position was ortho- or para-position of methoxy group, probably via the same bromine rearrangement found in the 5-methoxyindole (1b). Only the 6-methoxyindole (1c) did not show high regioselectivity. Reagents B and C gave generally 3-bromoindole very cleanly as well as the 5-methoxyindole (1b) except for the 4,6-dimethoxyindole (1f). The latter indole (1f) did not give selectively the 3-bromoindole (2f) even with Reagent B. The unoccupied C5- and C7-positions of 1f are too electron-enriched by two methoxy groups to undergo bromination regioselectively at the C3-position. On the other hand bromination of the 7-tosyloxyindole (1g), whose benzene moiety is deactivated occurred only at the C3-position even with Reagent A. In some cases was obtained dibromoindole (4), which should be formed by further bromination of corresponding monobromoindole (2 or 3). The formation of these by-products (4) would be decreased by precise optimization of reaction conditions.

Next, an equimolar mixture of the 3-bromoindole (6) and the 7-methoxyindole (1d) was treated under heating with concentrated sulfuric acid and lithium bromide in acetic acid to give ethyl indole-2-carboxylate (7) (77%) and ethyl 4-bromo-7-methoxyindole-2-carboxylate (3d) (82%) (Scheme 3). Together with the result on the reaction of 7-tosyloxyindole (1g), this reaction clearly shows that the rearrangement of the bromine atom occurs in intermolecular fashion only when the benzene moiety is activated by methoxy group, and that the mechanism suggested by Kruse³

becomes more probable. In addition, the reaction from 6 to 7 suggests a new C₃-debromination procedure.

In order to compare with the results on 2-ethoxycarbonyl-methoxyindole (1), 5-methoxyindole (8) which carries no 2-ethoxycarbonyl group, was treated with Reagent B. The reaction occurred very rapidly and gave probably the corresponding C_3 -bromo compound by ¹H-nmr spectroscopy. However, the product was too unstable to purify and decomposed gradually, whereas ethyl 3-bromo-methoxyindole-2-carboxylates (2) in the present study were very stable under the same treatment. This stability was due to the 2-ethoxycarbonyl group and will be helpful for synthetic work. In this paper we described a synthetic methodology for preparing stable 3-bromo-methoxyindole and a possibility of C₃-debromination. We are now under investigation for the application.

EXPERIMENTAL

All melting points were measured on a micro melting point hot stage apparatus (Yanagimoto) and are uncorrected. Ir spectra were recorded in nujol mulls (unless otherwise stated) on Shimadzu IR-400. ¹H-Nmr spectra were recorded in CDCl₃ (unless otherwise stated) with JEOL EX-400 (400 MHz) (unless otherwise stated), Hitachi R-900 (90 MHz), and with Hitachi R-24B (60 MHz). In the ¹H-nmr spectra, chemical shifts are given in δ values referred to internal tetramethylsilane, and the assignment of all NH signals was confirmed by the disappearance of their signals after addition of D₂O. Mass spectra were measured by the direct inlet system on JEOL JMS-D300 and JMS-DX303 spectrometer. For column chromatography, silica gel (Kiesel gel 60, 70-230 mesh, Merch) was used.

Starting Materials.

Ethyl 4- (la), 5- (lb), 6- (lc), and 7-methoxy-⁵ (ld), 4,6-dimethoxy-⁶ (lf), and 7-tosyloxy-⁷ (lg)indole-2-carboxylate were prepared by the reported methods.

Ethyl 4,7-dimethoxyindole-2-carboxylate (1e): A solution of ethyl azidoacetate⁸ (25.82 g, 0.20 mol) and 2,5-dimethoxybenzaldehyde (8.31 g, 0.05 mol) in EtOH (100 ml) was added slowly to a solution of NaOEt (prepared from 4.6 g of Na) in EtOH at -20 °C and the whole was stirred for 2.35 h at -2 to -4°C. The reaction mixture was poured into large amount of water, and extracted with AcOEt after salting-out. The organic layer was washed with saturated NaCl and dried over MgSO4. The residue obtained by evaporation of solvent was purified by column chromatography over silica gel with AcOEt-hexane by gradient elution to give crystals (14.52 g). Recrystallization from benzene-hexane gave 8.86g (64%) of ethyl 2azido-3-(2,5-dimethoxyphenyl)acrylate: colorless prisms, mp 84-86.5°C. Anal. Calcd for C13H15N3O4: C, 56.31, H, 5.45, N, 15.15. Found: C, 56.37, H, 5.46, N, 15.01. Ir v_{max} cm⁻¹: 2130(N₃), 1710(C=O). ¹H-Nmr δ (60 MHz): 1.37(3H, t, J=7.0 Hz, CH₂CH₃), 3.76(6H, s, OCH₃x2), 4.33(2H, q, J=7.0 Hz, OCH2CH3), 6.76(2H, m, C3 and C4-H), 7.29(1H, s, Ar-CH=), 7.73(1H, dif. d, J=2.0 Hz, C₆-H). Ms m/z: 277(M⁺, 18%), 176(base peak). A solution of the above azido-acrylate (6.511g, 23.5 mmol) in p-xylene (650 ml) was refluxed⁹ for 30 min under Ar atmosphere. After the reaction was over, the reaction mixture was evaporated in vacuo. The residue (5.84 g) was purified by column chromatography over silica gel with AcOEt-hexane by gradient elution to gave ethyl 4,7-dimethoxyindole-2-carboxylate (1e) (5.67 g, 97%). Recrystallization from AcOEt-hexane gave colorless needles, mp 127-127.5°C. Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64, H, 6.07,

N, 5.62. Found: 62.67, H, 6.11, N, 5.67. Ir v_{max} cm⁻¹: 3305(NH), 1690 (C=O). ¹H-Nmr δ (CDCl₃, 90 MHz): 1.36(3H, t, J=7.0 Hz, CH₂CH₃), 3.87(6H, s, OCH₃x2), 4.36 (2H, q, J=7.0 Hz, OCH₂CH₃), 6.32(1H, d, J=8.0 Hz, C₅-H), 6.58(1H, d, J=8.0 Hz, C₆-H), 7.28(1H, d, J=3.0 Hz, C₃-H), 9.03(1H, br s, NH). Ms m/z: 249 (M⁺, base peak).

General Procedure for Bromination of Ethyl Methoxyindole-2-carboxylate (1).

1) Bromination with Br_2 in AcOH (Reagent A): A solution of Br_2 (0.66 m mol) in AcOH (0.85 ml) was slowly added to a solution of ethyl methoxyindole-2-carboxylate (1) (0.55 mmol) in AcOH (1.9 ml) and the whole was stired under the reaction conditions shown in Table I. The reaction mixtue was poured into ice-cooled solution of aqueous $Na_2S_2O_3$, and extracted with AcOEt. The organic layer was washed with saturated NaHCO₃ and saturated NaCl successively, and dried over anhydrous MgSO₄. Evaporation of solvent <u>in vacuo</u> gave crude products. Column chromatography over silica gel with hexane-AcOEt by gradient elution gave pure products, which were recrystallized from appropriate solvent.

2) Bromination with pyridinium bromide perbromide in pyridine (Reagent <u>B</u>): A solution of pyridinium bromide perbromide (1.56 g, 4.88 mmol) in dry pyridine (30 ml) was slowly added to a solution of ethyl methoxyindole-2-carboxylate (1) (4.44 mmol) and the whole was stirred under the conditions shown in Table I. The reaction mixture was poured into icewater, acidified with 10% HCl, and extracted with AcOEt. The work-up procedure thereafter was the same as described in 1).

3) Bromination with NBS in DMF (Reagent C): A solution of NBS (80 mg, 0.45 mmol) in DMF (1.7 ml) was slowly added to a solution of ethyl methoxyindole-2-carboxylate (1) (0.38 mmol) in DMF (4 ml), and the whole was stirred under the conditions shown in Table I. The reaction mixture was poured into ice-water, and the same work-up as above afforded products. Identification of the Products Obtained by Bromination.

Ethyl 3-bromo-4-methoxyindole-2-carboxylate (2a): Colorless needles, mp 202-203°C from ethyl acetate. Anal. Calcd for $C_{12}H_{12}NO_3Br$: C, 48.34; H, 4.06; N, 4.70. Found: C, 48.35; H, 4.06; N. 4.74. Ir v_{max} cm⁻¹: 3320(NH) 1675(C=0). ¹H-Nmr & 1.44(3H, t, J=7.0 Hz, CH₂CH₃), 3.95(3H, s, OCH₃), 4.44(2H, q, J=7.0 Hz, OCH₂CH₃), 6.52(1H, d, J=8.0 Hz, C₅-H), 6.98(1H, d, J=8.0 Hz, C₇-H), 7.24(1H, t, J=8.0 Hz, C₆-H), 9.04(1H, br s, NH). Ms m/z: 299(M⁺+2, 53%), 297(M⁺, 54%), 251(base peak).

Ethyl 7-bromo-4-methoxyindole-2-carboxylate (3a): Colorless needles, mp 93-94.5°C from Et₂O-hexane. Anal. Calcd for $C_{12}H_{12}NO_{3}Br$: C, 48.34, H, 4.06, N, 4.70. Found: C, 48.12, H, 4.05, N, 4.75. Ir v_{max} cm⁻¹: 3300(NH) 1703(C=O). ¹H-Nmr δ (60 MHz, DMSO-d₆): 1.33 (3H, t, J=7.0 Hz, CH₂CH₃), 3.85(3H, s, OCH₃), 4.30 (2H, q, J=7.0 Hz, OCH₂CH₃), 6.48(1H, d, J=8.0 Hz, C₅-H), 7.15(1H, s, C₃-H), 7.35(1H, d, J=8.0 Hz, C₆-H), 11.65(1H, br s, NH). Ms m/z: 299(M⁺+2, 65%), 297(M⁺, 65%), 251(base peak).

Ethyl 5,7-dibromo-4-methoxyindole-2-carboxylate (4a-1): Colorless needles, mp 149-152°C from benzene-hexane. High resolution ms calcd for C_{12} -H₁₁NO₃Br₂: 374.9106. Found: 374.9152. Ir v_{max} cm⁻¹: 3310(NH), 1715(C=O). ¹H-Nmr δ : 1.44(3H, t, J=7.0 Hz, CH₂CH₃), 4.10(3H, s, OCH₃), 4.44(2H, q, J=7.0 Hz, OCH₂CH₃), 7.39(1H, d, J=2.5 Hz, C₃-H), 7.60(1H, s, C₆-H), 8.98 (1H, br s, NH). Ms m/z: 379(M⁺+4, 40%), 377(M⁺+2, 81%), 375(M⁺, 43%), 331 (base peak).

Ethyl 3,7-dibromo-4-methoxyindole-2-carboxylate (4a-2): Colorless prisms, mp 137.5-140°C from hexane. Anal. Calcd for $C_{12}H_{11}NO_{3}Br_{2}$: C, 38.23, H, 2.94, N,3.72. Found: C, 38.29, H, 2.96, N, 3.72. Ir $\bigvee_{max}^{CHCl_3}$ cm⁻¹: 3425 (NH), 1695(C=O). ¹H-Nmr &: 1.46(3H, t, J=7.0 Hz, CH₂CH₃), 3.94(3H, s, OCH₃), 4.46(2H, q, J=7.0 Hz, OCH₂CH₃), 6.45(1H, d, J=8.5 Hz, C₅-H), 7.37 (1H, d, J=8.5 Hz, C₆-H), 8.98(1H, br s, NH). Ms m/z: 379(M⁺+4, 28%), 377 (M⁺+2, 56%), 375(M⁺, 30%), 331(base peak).

Ethyl 3-bromo-5-methoxyindole-2-carboxylate (2b): Colorless needles, mp

157-158.5°C (lit.,³ 155-157°C) from ethyl acetate-hexane. Anal. Calcd for $C_{12}H_{12}NO_{3}Br$: C, 48.34, H, 4.06, N, 4.70. Found: C, 48.65, H, 4.12, N, 4.68. Ir v_{max} cm⁻¹: 3280(NH), 1675(C=0). ¹H-Nmr δ : 1.45(3H, t, J=7.0 Hz, CH₂CH₃), 3.89(3H, s, OCH₃), 4.45(2H, q, J=7.0 Hz, OCH₂CH₃), 7.01(1H, d, J=2.5 Hz, C₄-H), 7.04(1H, dd, J=2.5 and 9.0 Hz, C₆-H), 7.29(1H, d, J= 9.0 Hz, C₇-H), 8.99(1H, br s, NH). Ms m/z: 299(M⁺+2, 51%), 297(M⁺, 51%), 251(base peak).

<u>Ethyl 4-bromo-5-methoxyindole-2-carboxylate (3b)</u>: Colorless prisms, mp 170-171°C (lit.,³ 169-170°C and 166-167°C) from EtOH. Anal. Calcd for $C_{12H_{12}NO_{3}Br$: C, 48.34, H, 4.06, N, 4.70. Found: C, 48.14, H, 4.10, N, 4.74. Ir v_{max} cm⁻¹: 3300(NH), 1675(C=O). ¹H-Nmr δ : 1.43(3H, t, J=7.0 Hz, CH₂CH₃), 3.94(3H, s, OCH₃), 4.42(2H, q, J=7.0 Hz, OCH₂CH₃), 7.07(1H, d, J=9.0 Hz, C₆-H), 7.23(1H, dd, J=2.5 and 1.0 Hz, C₃-H), 7.33(1H, dd, J=9.0 and 1.0 Hz, C₇-H), 8.97(1H, br s, NH). Ms m/z: 299(M⁺+2, 62%), 297(M⁺, 63%), 251(base peak).

Ethyl 3,4-dibromo-5-methoxyindole-2-carboxylate (4b-1): Colorless needles, mp 173.5-174°C(lit.,³ 165-166°C) from benzene. Anal. Calcd for C₁₂-H₁₁NO₃Br₂: C, 38.23, H, 2.94, N, 3.72. Found: C. 38.31, H, 2.93, N, 3.72. Ir v_{max} cm⁻¹: 3270(NH), 1660(C=O). ¹H-Nmr δ : 1.45 (3H, t, J=7.0 Hz, CH₂-CH₃), 3.93(3H, s, OCH₃), 7.10(1H, d, J=9.0 Hz, C₆ or C₇-H), 7.33(1H, d, J=9.0 Hz, C₇ or C₆-H), 9.08(1H, br s, NH). Ms m/z: 379(M⁺+4, 27%), 377(M⁺ +2, 54%), 375(M⁺, 28%), 331(base peak).

Ethyl 3,6-dibromo-5-methoxyindole-2-carboxylate (4b-2): Colorless needles, mp 218-223°C from ethyl acetate-hexane. High resolution ms Calcd for $C_{12}H_{11}NO_{3}Br_{2}$: 374.9106(M⁺), 376.9085(M⁺+2). Found: 374.9186(M⁺), 376.9099(M⁺+ 2). Ir v_{max} cm⁻¹: 3290(NH), 1680(C=O). ¹H-Nmr δ : 1.45(3H, t, J=7.5 Hz, CH₂CH₃), 3.98(3H, s, OCH₃), 4.45(2H, q, J=7.5 Hz, OCH₂CH₃), 7.04(1H, s, C₄ or C₇-H), 7.64(1H, s, C₇ or C₄-H), 8.90 (1H, br s, NH). Ms m/z: 379(M⁺+4, 26%), 377(M⁺+2, 53%), 375(M⁺, 27%), 331 (base peak). Ethyl 3-bromo-6-methoxyindole-2-carboxylate (2c): Colorless prisms, mp

145-147°C from benzene. Anal. Calcd for C12H12NO3Br: C, 48.34, H, 4.06, N, 4.70. Found C, 48.29, H, 4.03, 4.71. Ir v_{max} cm⁻¹: 3290(NH), 1670 (C=O). ¹H-Nmr δ(60 MHz): 1.45(3H, t, J=7.0 Hz, CH₂CH₃), 3.81(3H, s, OCH₃), 4.41 (2H, q, J=7.0 Hz, OCH₂CH₃), 6.76(1H, dif. s, C₇-H), 6.83(1H, dd, J=8.0 and 2.0 Hz, C₅-H), 7.48(1H, dif. d, J=8.0 Hz, C₄-H), 9.00(1H, br s, NH). Ms m/z: 299(M⁺+2, 79%), 297(M⁺, 80%), 251(base peak). Ethyl 5-bromo-6-methoxyindole-2-carboxylate(3c-1): Colorless needles, mp 179-180°C from ethyl acetate-hexane. Anal. Calcd for C12H12NO3Br: C, 48.34, H, 4.06, N, 4.70. Found: C, 48.18, C, 4.07, N, 4.77. Ir v_{max} cm⁻¹: 3360 (NH), 1675 (C=O). ¹H-Nmr δ(60 MHz, DMSO-d₆): 1.31(3H, t, J=7.0 Hz, CH₂CH₃), 3.82(3H, s, OCH₃), 4.27(2H, q, J=7.0 Hz, OCH₂CH₃), 6.94(1H, s, C₇-H), 6.95(1H, dif. d, J=2.0 Hz, C₃-H), 7.74(1H, s, C₄-H), 11.81(1H, br s, NH). Ms m/z: 299(M^++2 , 97%), 297(M^+ , 99%), 253(base peak). Ethyl 7-bromo-6-methoxyindole-2-carboxylate (3c-2): Not isolated. 4 1H-Nmr & (DMSO-d₆): 1.34(3H, t, J=7.0 Hz, CH₂CH₃), 3.90(3H, s, OCH₃), 4.33 (2H, q, J=7.0 Hz, OCH₂CH₃), 7.04(1H,d, J=9.0 Hz, C₅-H), 7.25(1H, d, J= 2.0 Hz, C₃-H), 7.66(1H, d, J=9.0 Hz, C₄-H), 11.46(1H, br s, NH). Ethyl 3,5-dibromo-6-methoxyindole-2-carboxylate (4c-1): Colorless needles, mp 236.5-238°C from ethyl acetate-hexane. Anal. Calcd for $C_{12}H_{11}$ -NO3Br2: C, 38.23, H, 2.94, N, 3.72. Found: C, 38.02, H, 2.92, N, 3.78. Ir ν_{max} cm⁻¹: 3280(NH), 1665(C=O). ¹H-Nmr δ(60 MHz, DMSO-d₆): 1.35(3H, t, J=7.0 Hz, CH₂CH₃), 3.85(3H, s, OCH₃), 4.31(2H, q, J=7.0 Hz, OCH₂CH₃), 6.93(1H, s, C₇-H), 7.58(1H, s, C₄-H), 12.15(1H, br s, NH). Ms m/z: 379 $(M^++4, 39\%), 377(M^++2, 79\%), 375(M^+, 41\%), 331(base peak).$ Ethyl 3,7-dibromo-6-methoxyindole-2-carboxylate (4c-2): Colorless needles, mp 118.5-120°C from hexane-ethyl acetate. Anal. Calcd for $C_{12}H_{11}$ -NO3Br2: C, 38.23, H, 2.94, N, 3.72. Found 38.35, H, 2.98, N, 3.75. Ir v_{max} cm⁻¹: 3250(NH), 1680(C=O). ¹H-Nmr δ (60 MHz): 1.43(3H, t, J=7.0 Hz, CH₂CH₃), 3.94(3H, s, OCH₃), 4.42(2H, q, J=7.0 Hz, OCH₂CH₃), 6.87(1H, d, J=8.0 Hz, C₅-H), 7.49(1H, d, J=8.0 Hz, C₄-H), 8.82(1H, br s, NH). Ms m/z:

 $379(M^++4, 32\%), 377(M^++2, 64\%), 375(M^+, 32\%), 331(base peak).$ Ethyl 3-bromo-7-methoxyindole-2-carboxylate (2d): Colorless needles, mp 128-129°C from benzene-hexane. Anal. Calcd for $C_{12}H_{12}NO_{3}Br$: C, 48.34, H, 4.06, N, 4.70. Found: C, 48.35, H, 4.04, N, 4.59. Ir v_{max} cm⁻¹: 3280 (NH), 1688(C=O). ¹H-Nmr δ: 1.45(3H, t, J=7.0 Hz, CH₂CH₃), 3.98(3H, s, OCH₃), 4.45(2H, q, J=7.0 Hz, OCH₂CH₃), 6.77(1H, d, J=8.0 Hz, C₆-H), 7.14 (1H, t, J=8.0 Hz, C₅-H), 7.25(1H, d, J=8.0 Hz, C₄-H), 9.14, (1H, br s, NH). Ms m/z: $299(M^++2, 84\%)$, $297(M^+, 85\%)$, 251(base peak). Ethyl 4-bromo-7-methoxyindole-2-carboxylate (3d): Colorless needles, mp 141.5-142.5°C from benzene-hexane. Anal. Calcd for C₁₂H₁₂NO₃Br: C, 48.34, H, 4.06, N, 4.70. Found: C, 48.20, H, 3.98, N, 4.67. Ir v_{max} cm⁻¹: 3300 (NH), 1705(C=0). ¹H-Nmr δ : 1.42(3H, t, J=7.0 Hz, CH₂CH₃), 3.95(3H, s, OCH₃), 4.42(2H, q, J=7.0 Hz, OCH₂CH₃), 6.58(1H, d, J=8.0 Hz, C₆-H), 7.20 (1H, d, J=8.0 Hz, C₅-H), 7.21(1H, d, J=2.0 Hz, C₃-H), 9.17(1H, br s, NH). Ms m/z: $299(M^++2, 98\%), 297(M^+, 97\%), 253(base peak).$ Ethyl 3,4-dibromo-7-methoxyindole-2-carboxylate (4d): Colorless needles, mp 155-156°C from benzene-hexane. Anal. Calcd for C12H11NO3Br2: C, 38.23, H, 2.94, N, 3,72. Found: C, 38.41, H, 2.92, N, 3.75. Ir v_{max} cm⁻¹: 3270 (NH), 1700(C=O). ¹H-Nmr δ: 1.45(3H, t, J=7.0 Hz, CH₂CH₃), 3.95(3H, s, OCH₃), 4.46(2H, q, J=7.0 Hz, OCH₂CH₃), 6.56(1H, d, J=8.0 Hz, C₆-H), 7.26 (1H, d, J=8.0 Hz, C₅-H), 9.24(1H, br s, NH). Ms m/z: 379(M⁺+4, 34%), 377 $(M^++2, 70\%), 375(M^+, 35\%), 331$ (base peak). Ethyl 3-bromo-4,7-dimethoxyindole-2-carboxylate (2e): Colorless plates, mp 206.5-208°C from CHCl₃. Anal. Calcd for C₁₃H₁₄NO₄Br: C, 47.58, H, 4.30, N, 4.27. Found: C, 47.70, H, 4.28, N, 4.42. Ir v_{max} cm⁻¹: 3280(NH), 1680(C=O). ¹H-Nmr δ(60 MHz): 1.40(3H, t, J=7.0 Hz, CH₂CH₃), 3.83(6H, s, OCH₃x2), 4.38(2H, q, J=7.0 Hz, OCH₂CH₃), 6.27(1H, d, J=8.0 Hz, C₅ or C₆-

H), 6.52(1H, d, J=8.0 Hz, C_6 or C_5 -H), 9.08(1H, br s, NH). Ms m/z:329 (M⁺+2, 78%), 327(M⁺, 79%), 281(base peak).

Ethyl 5-bromo-4,7-dimethoxyindole-2-carboxylate (3e-1): Colorless prisms,

mp 133-136°C from ethyl acetate-hexane. Anal. Calcd for $C_{13}H_{14}NO_4Br$: C, 47.58, H,4.30, N, 4.27. Found: C, 47.72, H, 4.30, N, 4.36. Ir v_{max} cm⁻¹: 3290 (NH), 1690 (C=O). ¹H-Nmr δ (90 MHz): 1.39(3H, t, J=7.0 Hz, CH₂CH₃), 3.91(3H, s, C₇-OCH₃), 3.97(3H, s, C₄-OCH₃), 4.41(2H, q, J=7.0 Hz, OCH₂-CH₃), 6.77(1H, s, C₆-H), 7.24(1H, d, J=2.0 Hz, C₃-H), 9.10(1H, br s, NH). Ms m/z: 329(M⁺+2, 99%), 377(M⁺, base peak).

Ethyl 6-bromo-4,7-dimethoxyindole-2-carboxylate (3e-2): Colorless prisms, mp 106-109°C from ethyl acetate-hexane. Anal. Calcd for $C_{13}H_{14}NO_4Br$: C, 47.58, H, 4.30, N, 4.27. Found: C, 47.36, H, 4.29, N, 4.28. Ir v_{max} cm⁻¹: 3320(NH), 1685(C=O). ¹H-Nmr δ (90 MHz): 1.40(3H, t, J=7.0 Hz, CH₂CH₃), 3.90(3H, s, C₄-OCH₃), 3.93(3H, s, C₇-OCH₃), 4.40(2H, q, J=7.0 Hz, O-C<u>H₂-</u> CH₃), 6.56(1H, s, C₅-H), 7.27(1H, d, J=2.0 Hz, C₃-H), 9.08(1H, br s, NH). Ms m/z: 329(M⁺+2, 95%), 327(M⁺, base peak).

Ethyl 3,5-dibromo-4,7-dimethoxyindole-2-carboxylate (4e): Colorless prisms, mp 148.5-150.5°C from ethyl acetate-hexane. Anal. Calcd for C_{13} - $H_{13}NO_4Br_2$: C, 38.36, H, 3.22, N, 3.44. Found: C, 38.37, H, 3,28, N, 3.48. Ir v_{max} cm⁻¹: 3270(NH), 1685(C=O). ¹H-Nmr &: 1.45(3H, t, J=7.0 Hz, CH₂- CH_3), 3.93(6H, s, OCH₃x2), 4.45(2H, q, J=7.0 Hz, OCH₂CH₃), 6.81(1H, s, C_6 -H), 9.22(1H, br s, NH). Ms m/z: 409(M⁺+4, 49%), 407(M⁺+2, base peak), 405(M⁺, 51%).

Ethyl 3-bromo-4,6-dimethoxyindole-2-carboxylate (2f): Colorless prisms, mp, 216-219°C from hexane-ethyl acetate. High resolution ms calcd for $C_{13H_{14}NO_{4}Br: 327.0106$; Found: 327.0155. Ir v_{max} cm⁻¹: 3300(NH), 1660 (C=O). ¹H-Nmr δ : 1.43(3H, t, J=7.0 Hz, CH₂CH₃), 3.83(3H, s, OCH₃), 3.91 (3H, s, OCH₃), 4.41(2H, q, J=7.0 Hz, OCH₂CH₃), 6.19(1H, d, J=2.0 Hz, C₅ or C₇-H), 6.38(1H, d, J=2.0 Hz, C₇ or C₅-H), 8.84(1H, br s, NH). Ms m/z: 329(M⁺+2, 71%), 327(M⁺, 73%), 281(base peak).

Ethyl 7-bromo-4,6-dimethoxyindole-2-carboxylate (3f): Colorless prisms, mp 141.5-144°C from hexane-ethyl acetate. High resolution ms calcd for $C_{13}H_{14}NO_4Br$: 327.0106. Found: 327.0146. Ir v_{max} cm: 3310(NH), 1685(C=O). ¹H-Nmr & (60 MHz): 1.38(3H, t, J=7.0 Hz, CH_2CH_3), 3.90(6H, s, OCH_3x2), 4.37 (2H, q, J=7.0 Hz, OCH_2CH_3), 6.26(1H, s, C_5 -H), 7.24(1H, d, J=2.0 Hz, C_3 -H), 8.73(1H, br s, NH). Ms m/z: 329(M⁺+2, 79%), 327(M⁺, 78%), 281 (base peak).

Ethyl 3,7-dibromo-4,6-dimethoxyindole-2-carboxylate (4f): Colorless prisms, mp 165-167.5°C from ethyl acetate-hexane. Anal. Calcd for C_{13} - $H_{13}NO_4Br_2$: C, 38.36, H, 3.22, N, 3.44. Found: C, 38.58, H, 3.29, N, 3.47. Ir v_{max} cm⁻¹: 3445(NH), 1690(C=O). ¹H-Nmr δ : 1.44(3H, t, J=7.0 Hz, CH_2CH_3), 3.97(6H, s, OCH_3x2), 4.44(2H, q, J=7.0 Hz, OCH_2CH_3), 6.32(1H, s, C₅-H), 8.85(1H, br s, NH). Ms m/z: 409(M⁺+4, 28%), 407(M⁺+2, 53%), 405 (M⁺, 27%), 361(base peak).

Ethyl 3-bromo-7-(p-toluenesulfonyloxy)indole-2-carboxylate (2g): Colorless needles, mp 125-127°C from benzene-hexane. Anal. Calcd for $C_{18}H_{16}$ -NO₅BrS: C, 49.33, H, 3.68, N, 3.20. Found: C, 49.53, H, 3.70, N, 3.21. Ir v_{max} cm⁻¹: 3270(NH), 1705(C=O). ¹H-Nmr δ : 1.46(3H, t, J=7.0 Hz, CH₂-CH₃), 2.45 (3H, s, ArCH₃), 4.46(2H, q, J=7.0 Hz, OCH₂CH₃), 6.81(1H, d, J=7.5 Hz, C₆-H), 7.05(1H, t, J=7.5 Hz, C₅-H), 7.32(2H, d, J=8.5 Hz, Ar-H), 7.55(1H, d, J=7.5 Hz, C₄-H), 7.73(2H, d, J=8.5 Hz, Ar-H), 9.16(1H, br s, NH). Ms m/z: 439(M⁺+2, 55%), 437(M⁺, 52%), 282(base peak).

The Experiment for Intermolecular Bromine Rearrangement

Ethyl 3-bromoindole-2-carboxylate (6) (100 mg, 0.37 mmol), ethyl 7-methoxyindole-2-carboxylate (1d) (82 mg, 0.37 mmol), and LiBr·H₂O (39 mg, 0.37 mmol) were added to a solution of 97% H_2SO_4 (43 mg, 0.43 mmol) in AcOH (6 ml). The whole was stirred at 130°C for 1 h. The reaction mixture was poured into ice-water, neutralized with 10% NaOH, and extracted with AcOEt. The organic layer was washed with saturated NaCl, dried over MgSO₄, and evaporated to dryness <u>in vacuo</u>. The residue (174 mg) was chromatographed over silica gel with hexane-AcOEt by gradient elution to give ethyl indole-2-carboxylate (7) (55 mg, 77% yield based on 6) and

ethyl 4-bromo-7-methoxyindole-2-carboxylate (3d) (91 mg, 82% yield based on 1d).

ACKNOWLEDGNENT

This work was supported in part by a Grand-in-Aid for Scientific Research (No. 03671017) from the Ministry of Education, Science and Culture of Japan, and by Japan Research Foundation for Optically Active Compounds.

REFERENCES

- Part XXIX: T. Watanabe, H. Takahashi, H. Kamakura, S. Sakaguchi,
 M. Osaki, S. Toyama, Y. Mizuma, I. Ueda, and Y. Murakami, <u>Chem.</u>
 Pharm. Bull., 1991, **39**, 3145.
- a) W. A. Remers, "Indoles Part One" in a series of "Heterocyclic Compound," ed. by W. J. Houlihan, p. 71, Wily-Interscience, New York, 1972. b) R. J. Sundberg, "The Chemistry of Indoles." p. 14, Academic Press, New York and London, 1970.
- 3. L. I. Kruse and M. D. Meyer, <u>J. Org. Chem.</u>, 1984, **49**, 4761.
- 4. Ethyl 7-bromo-6-methoxyindole-2-carboxylate (3c-2) was not isolated. This compound was identified and the yield was estimated only based on the ¹H-nmr spectrum of the mixture of the products (3c-1 and 3c-2).
- H. Ishii and Y. Murakami, <u>Yakugaku Zasshi</u>, 1979, 99, 413 (Chem. Abstr., 1979, 91, 38438r).
- H. Ishii, H. Takeda, T. Hagiwara, M. Sakamoto, K. Kogusuri, and Y. Murakami, <u>J. Chem. Soc., Perkin Trans. I</u>, 1989, 2407.
- Y. Murakami, H. Takahashi, Y. Nakazawa, M. Koshimizu, T. Watanabe, and Y. Yokoyama, Tetrahedron Lett., 1989, 30, 2099.
- 8. M. O. Forster and H. E. Fierz, <u>J. Chem. Soc.</u>, 1908, 93, 72.
- H. Hemetsberger, D. Knittel, and H. Weidmann, <u>Monatsh. Chem.</u>, 1970, 101, 161.

Received, 10th July, 1992