NEW ACRIMARINES FROM CITRUS PLANTS¹

Yuko Takemura,^a Mami Inoue,^a Hisayo Kawaguchi,^a Motoharu Ju-ichi,^{a,*} Chihiro Ito,^b, Hiroshi Furukawa^b and Mitsuo Omura^C

Faculty of Pharmaceutical Sciences. Mukogawa Women's University.^a Nishinomiya. Hyogo 663. Japan Faculty of Pharmacy. Meijo University.^b Tempaku. Nagoya 468. Japan Fruit Tree Research Station.^C Ministry of Agriculture. Forestry and Fisheries. Okitsu. Shimizu 424-02. Japan

<u>Abstracts</u>——Five new acrimarines (acridonecoumarin dimers) were isolated from some <u>Citrus</u> plants (Rutaceae) and their structures were elucidated by spectroscopic method.

Recently, we reported the isolation and structure elucidation^{2,3} of acrimarine-A ~ -H, dimeric compounds in which an acridone unit has been coupled to a coumarin. Further examination of the roots of "Yalaha" [several hybrid seedlings resulting from a cross of Duncan grapefruit (<u>Citrus paradisi Macf.</u>) x Dancy tangerine (<u>C. tangerine</u> Hort. ex Tanaka)] and "Funadoko" (<u>C. funadoko</u> Hort. ex Tanaka) afforded five new compounds. named acrimarine-I (1), -J (4), -K (5), -L (6) and -M (7) and in this paper we wish to report the isolation and structure elucidation of these new compounds. Acrimarine-I (1) was obtained as yellow oil, $[\alpha]_D + 27.8^{\circ}(CHCl_3)$. The high resolution ms showed molecular formula $C_{34}H_{31}NO_7$, which was considered to give rise to two characteristic ions from the halves of the molecule at m/z 323 and 242 corresponding to formulae $C_{19}H_{17}NO_4$ and $C_{15}H_{14}O_3$, respectively, indicating the presence of acridone and coumarin structures. The ir $(3400, 1720, 1620, 1560 \text{ cm}^{-1})$ and uv [205, 223 (sh), 270 (sh), 296, 328, 348 (sh) nm] spectra suggested the presence of 1-hydroxy-9-acridone mojety.⁴ The ¹H nmr spectrum showed the presence of hydrogen bonded hydroxyl group (δ 14.63). ABC type aromatic protons $[\delta 7, 94 (1H, dd, J = 7.9, 1.8 Hz), 7.15 (1H, t, J = 7.9 Hz), 7.09 (1H, dd, d.)$ J= 7.9, 1.8 Hz)], 1.1-dimethylpyran ring [δ 6.61 (1H, d, J= 9.8 Hz), 5.48 (1H. d. $J \approx 9.8$ Hz), 1.14, 1.46 (each 3H. s)], characteristic H-4', H-3', H-5' and H-8' of coumarin nucleus [δ 7.67, 6.22 (each 1H, d. J= 9.2 Hz). 7.62, 6.69 (each 1H, s)], and a prenyl group connected with two aryl moieties [§ 5.94 (1H. d. J= 9.8 Hz), 5.74 (1H. d. J= 9.8 Hz), 1.80 (3H. s), 1.75 (3H, s)]. Two singlets at δ 3.75 and 3.72 in the ¹H nmr and two quartets at δ 55.9 and 48.5 in the 13 C nmr spectra showed the presence of each one methoxy and <u>N</u>-methyl group. In nOe experiments, irradiation of the methoxy signal at δ 3.75 gave 20% increments of the signal at δ 6.69 (H-8'). On the other hand, when the <u>N</u>-methyl signal at δ 3.72 was irradiated. 13% increments were observed on the signal at δ 6.61 (H-11). From these results, the location of methoxy group was assigned to C-7' and the angular orientation of the dimethylpyran ring was confirmed. The similalities of signal patterns of ¹H nmr spectrum suggested the presence of 5-hydroxynoracronycine $(2)^5$ and suberosin $(3)^6$ moieties in the structure. The location of the suberosin unit was elucidated by ¹H detected heteronuclear multiple bond connectivity (HMBC) spectrum. The H-bonded proton signal at δ 14.63 showed long-range correlations with the

H-C Correlations in H-C long range COSY spectrum (J=5 Hz) of acrimarine-K (5)

carbon signals at δ 162.0 (C-1), 112.6 (C-2), and 107.1 (C-9a). Further, the proton signal at δ 5.74 (H-1") was correlated with carbon signals at δ 162.0 (C-1), 112.6 (C-2), 159.0 (C-3), 132.9 (C-3"), 128.6 (C-5'), and 130.6 (C-6'). Other CH long range correlations observed are shown by arrows in Figure 1. Based on these spectral data, the structure of acrimarine-I was concluded to 1.

Acrimarine-J (4) was obtained as yellow oil, $[\alpha]_D \pm 0^0$ (CHCl₃). The mass spectrum showed the molecular ion at m/z 595 which corresponded to $C_{35}H_{33}NO_8$, a difference of CH₂O compared with 1. The ¹H nmr features were similar to those of 1, except for appearances of one more methoxy $(\delta 3.90)$ signal and change of ABC type aromatic protons to AB type [δ 7.96, 6.97 (each 1H, d, J= 8.5 Hz). The signals at δ 3.90, 3.84, 3.75 in the 1 H nmr and δ 60.5, 56.5, 48.9 in the 13 C nmr spectra indicated the presence of two methoxy and one \underline{N} -methyl group. The location of methoxy groups and the situation of 1,1-dimethylpyran ring were determined by nOe experiments. Irradiation of the signal at § 3.75 and 3.84 showed 14% and 20% increments of the signals at δ 6.69 (H-11) and 6.83 (H-8'). respectively. When the signal at δ 3.90 was irradiated, no increments were observed on any signals. These results indicated the locations of methoxy groups at C-5 and C-7', phenolic hydroxyl group at C-6, and the angular situation of 1,1-dimethylpyran ring. On the basis of these results. structure (4) was assigned to acrimarine-J. Acrimarine-K (5) was isolated as yellow oil. $[\alpha]_D \pm 0^0$ (CHCl₃). The

molecular formula $C_{30}H_{27}NO_8$ was established by high resolution ms. The ¹H nmr spectrum showed the signals of <u>ortho</u> coupled [δ 8.04, 6.94 (each 1H, d, J= 8.8 Hz)], isolated [δ 6.48 (1H, s)] aromatic protons, characteristic signals due to H-4', H-3', H-5' and H-8' of coumarin nucleus [δ 7.88, 6.16 (each 1H, d, J= 9.5 Hz), 7.73, 6.82 (each 1H, s)],

and signals due to a prenyl group coupled to two aryl groups [δ 1.75 (3H. s), 1.72 (3H, s), 5.83 (1H, d, J= 9.5 Hz) and 6.08 (1H, d, J= 9.5 Hz)]. The signals at δ 3.98, 3.87, 3.77 in ¹H nmr and δ 40.2, 56.9, 62.2 in 13 C nmr spectra indicated the presence of two methoxy and one <u>N</u>-methyl group. The location of methoxy groups was determined by nOe experiments. Irradiation of the signal at δ 3.98 and 3.87 showed 14% and 16% increments of the signal at δ 6.48 (H-4) and 6.82 (H-8'), respectively. On the other hands, when the signal at δ 3.77 was irradiated, no increments were observed at any proton signals. Thus, the location of two methoxy groups was determined to C-5 and C-7'. From the above data, the location of suberosin unit was assigned at C-2 in the acridone skeleton, and the structure of acrimarine-K was determined to 5. The proposed structure was further confirmed by HC long range COSY shown by arrows in Figure 2. Acrimarine-L (6) was isolated as yellow oil, $[\alpha]_{D} \pm 0^{0}$ (CHCl₃), and gave a molecular ion at m/z 529 which corresponded to ${
m C}_{30}{
m H}_{27}{
m NO}_8$, the same as that of acrimarine-K (5). The 1 H nmr spectrum showed a good similarity with that of 5. except for small differences of chemical shifts indicating the presence of suberosin and 1.3,5,6-oxygenated 9-acridone units. The signals at δ 3.97, 3.94 and 3.87 indicated the presence of methoxy groups. In the nOe experiments, irradiation of the signal at δ 3.97 and 3.87 showed 17% and 14% increments of the signal at δ 6.34 (H-2) and 6.92 (H-8'), respectively. On the other hands, when the signal at δ 3.94 was irradiated, no increments were observed. Meanwhile, when the signal at δ 9.14 assumed to NH signal was irradiated, 12% and 9% increments were observed on the signal at δ 5.78 (H-1") and 5.91 (H-2"), respectively. These results indicated the locations of methoxy groups were at C-3, C-5and C-7', and the linking positions of acridone and coumarin rings were at C-4 and C-6', respectively. The above data led us to assign structure

1

6 to acrimarine-L.

Acrimarine-M (7) was isolated as yellow oil, $[\alpha]_D \pm 0^0$ (CHCl₃). The molecular formula, $C_{29}H_{25}NO_6$, was confirmed by high resolution ms. The 1H nmr spectrum showed, besides signals of suberosin unit, ABCD type [& 8.38 (1H, d, J = 8.1 Hz), 7.76 (1H, t, J = 8.1 Hz), 7.73 (1H, d, J = 8.1 Hz),7.30 (1H, t, J= 8.1 Hz)] and a lone [δ 6.54 (1H, s)] aromatic proton signal and two methyl singlets (δ 3.82 and 3.86). The location of two methyl signals at δ 3.86 and 3.82 was assigned by nOe experiments. When the signal at δ 3.82 was irradiated, each 14% and 10% increments were observed on the signals at δ 7.73 (H-5) and 6.54 (H-4), respectively. On the other hands, irradiation of the signal at δ 3.86 showed 11% increments of the signal at δ 6.82 (H-8'). The above data showed the presence of <u>N</u>-methyl group, the location of methoxy group at C-7', and the coupling position of the acridone and the coumarin nuclei was at C-2and C-6'. From these results, the structure 7 was assigned to acrimarine-M. The absolute configurations of these new acrimarines remain to be determined.

EXPERIMENTAL

Extraction and Isolation of Acrimarine-I (1) and -J (4) The roots of "Yalaha" [several hybrid seedlings resulting from a cross of Duncan grapefruit (C. paradisi Macf.) x Dancy tangerine (C. tangerine Hort. ex Tanaka)](750 g) collected at the orchard of Okitsu Branch, Fruit Tree Research Station was extracted with acetone (2 L x 2) under reflux for 8hr. The extract (103.1 g) was chromatographed over silica gel column and eluted with toluene. toluene-CH₂Cl₂, CH₂Cl₂. acetone-CH₂Cl₂. acetone and MeOH. The acetone-CH₂Cl₂ (1:9) eluate was further separated by silica gel column, centrifugal chromatography. PTLC developed with acetone-CHCl₃

(1:9), MeOH-CHCl₃ (1:19), acetone-benzene (2:8) to give acrimarine-1 (2.3 mg) and -J (5.3 mg) together with many other compounds. <u>Isolation of Acrimarine-K (5). -L (6) and -M (7)</u> The AcOEt eluate of silica gel column chromatography of acetone extracts of C. funadoko Hort. ex Tanaka reported before 2 was further separated by PTLC using appropriate solvent systems of isopropyl ether, acetone-CHCl₃(1:9). acetone-benzene (2:8), $MeOH-CHCl_3$ (1:19), AcOEt-benzene (3:7) to give acrimarine-K (13.7 mg), -L (3.2 mg) and -M (2.1 mg). <u>Acrimarine-1</u> (1) Yellow oil, $[\alpha]_D^{26} + 27.8^{\circ}$ (c* 0.036, CHCl₃); uv λ_{max} (EtOH): 205. 223(sh). 270 (sh). 296, 328, 348 (sh) nm; ir (CHCl₃) 3400, 1720, 1620, 1560 cm⁻¹; hrms m/z 565.2115 $[M]^+$ (C₃₄H₃₁NO₇ calcd 565.2101). m/z 323.1135 $[(C_{19}H_{17}NO_4)^+$, calcd 323.1158], m/z 242.0950 $[(C_{15}H_{14}O_3)^+, \text{ calcd } 242.0943]; \text{ eims m/z: } 565 (M^+, \text{ base peak}), 550, 522,$ 496, 380, 365, 312, 297. <u>Acrimarine_J (4)</u> Yellow oil, $[\alpha]_D^{28} \pm 0^0$ (c= 0.106, CHCl₃); uv λ_{max} (EtOH) 205, 226 (sh), 271, 287, 304 (sh), 343 nm; ir (CHCl₃) 3440, 1720, 1620, 1560 cm⁻¹; hrms m/z 595.2209 [M]⁺ ($C_{35}H_{33}NO_8$ calcd 595.2206); eims m/z 595 (M⁺, base peak), 580, 552, 526, 484, 406, 354, 331, 278, 242. <u>Acrimarine-K</u> (5) Yellow oil, $[\alpha]_D^{25} \pm 0^0$ (c= 0.0695, CHCl₃); uv λ_{max} (MeOH) 205, 219, 263, 276, 300 (sh), 331 nm; ir (CHCl₃) 3500, 3400 (br). 1720, 1620, 1600, 1570 cm⁻¹: hrms m/z 529.1751 [M]⁺ ($C_{30}H_{27}NO_8$ calcd 529.1734), m/z 243.0980 $[(C_{15}H_{15}O_3)^+, \text{ calcd } 243.1019], \text{ m/z } 287.0826$ $[(C_{15}H_{13}NO_5)^+, calcd 287.0793]; eims m/z 529 (M^+), 486, 288, 287 (base)$ peak), 273, 272, 244, 243, 242, 230, 228, 227, 214, 213, 212, 211, <u>Acrimarine-L</u> (6) Yellow oil, $[\alpha]_D^{25} \pm 0^0$ (c= 0.061, CHCl₃); uv λ_{max} (MeOH) 205, 221, 256, 266, 286 (sh), 295 (sh), 328 nm; ir (CHCl₃) 3380 (br), 1730, 1640, 1620, 1570 cm⁻¹; hrms m/z 529.1730 [M]⁺ ($C_{30}H_{27}NO_8$ calcd 529.1734), m/z 242.0918 $[(C_{15}H_{14}O_3)^+, \text{ calcd } 242.0942], \text{ m/z } 287.0751$

	1*		4		5		6	7
-	δ _H	δC	δH	δC	δ _Η	δC	δH	δн
1-0H	14.63	162.0	15.07	162.8	15.26	164.1	14.65	15.42
2		112.6		112.3		105.5	6.34	
3		159.0		161.8		163.6		
3-OMe							3.97	
4		102.4		103.4	6.48	92.8		6.54
4a		146.2		146.8		147.0		
5		146.3		143.5		136.6		7.73 d
5-OMe			3.90	60.5	3.77	62.2	3.94	(8.1)
6	7.09 dd	120.0		159.4		157.3		7.76 t
	(7.9, 1.8)							(8.1)
7	7.15 t	123.0	6.97 d	113.8	6.94 d	113.3	6.88 d	7.30 t
	(7.9)		(8.5)		(8.8)		(8.7)	(8,1)
8	7.94 dd	118.6	7.96 d	124.9	8.04 d	124.2	7.84 d	8.38 d
	(7.9, 1.8)		(8.5)		(8.8)		(8.7)	(8.1)
8a		125.6		118.6		117.9		
9		182.1		182.4		181.3		
9a		107.1		106.9		112.8		
10a		137.0		132.5		139.9		
N-Me	3.72	48.5	3.75	48.9	3.98	40.2	0 14	3.82
N-H 11	6 61 8	191 9	6 60 4	191 0			9.14	
11	(9.8)	121.0	(9.8)	121.5				
12	5.48 d (9.8)	123.6	5.81 d (9.8)	123.3				
13		76.4		77.3				
13-Me	1.14	27.3	1.50	26.1				
	1.46	32.7	1.50	27.4				
2'		161.9		161.3		161.8		
3'	6.22 d	112.4	6.17 d	113.2	6.16 d	113.5	6.21 d	6.15 d
	(9.2)		(9.8)		(9.5)		(9.7)	(9.5)
4'	7.67 d	144.2	7.92 d	145.0	7.88 d	145.6	7.98 d	7.89 d
	(9.2)		(9.8)		(9.5)		(9.7)	(9.5)
4a'		111.5		113.3		112.8		
5'	7.62	128.6	7.76	129.7	7.73	130.0	7.78	7.74
6'		130.6		131.0		111.7		
7'		160.9		159.4		162.3		
7'-OMe	3.75	55.9	3.84	56.5	3.87	56.9	3.87	3.86
8'	6.69	98.4	6.83	99.2	6.82	99.6	6.92	6.82
8'a		154.3		155.4		155.8		
1 "	5.74 d	26.4	5.63 d	33.5	5.83 d	34.1	5.78 d	5.83 d
2"	5 94 d	124 1	10.07	195 9	19.07	196 7	(0.4) 5 01 4	(9.9)
-	(9.8)	167.1	(9.8)	120.0	(9.5)	140.1	0.91 d (8 4)	0.090 (95)
3"	/	132.9		132.5	(0.0)	131 3	(0.1)	(0.0)
3"-Me	1.75	18.1	1.74	18.2	1.72	18.7	1.66	1.73
	1.80	26.1	1.76	26.6	1.75	26.5	1.82	1.75
	······································					_0.0		1.10

Table. ¹H and ¹³C nmr spectral data of acrimarines (acetone- d_6)

.

Values are given in δ ppm. Figures in parenthses are coupling constant (J) in Hz. * Measured in CDCl₃.

 $[(C_{15}H_{13}NO_5)^{+}, calcd 287.0792]; eims m/z 529 (M^{+}), 301, 288, 287, 272, 244, 243, 242, 229, 228, 227, 214, 213 (base peak), 212, 211, 1^{3}C nmr (acetone-d_6) & 57.0, 57.2, 61.5, 7$ $<u>Acrimarine-M (7)</u> Yellow oil. <math>[\alpha]_{D}^{25} \pm 0^{0}$ (c= 0.052, CHCl₃); uv λ_{max} (MeOH) 205, 224, 248, 277, 296 (sh), 331 nm; ir (CHCl₃) 3400 (br), 1725, 1620, 1600 cm⁻¹; hrms m/z 483.1707 [M]⁺ (C₂₉H₂₅NO₆ calcd 483.1681), m/z 241.0735 [(C₁₄H₁₁NO₃)⁺, calcd 241.0737], m/z 242.0979 [(C₁₅H₁₄O₃)⁺, calcd 241.0737], m/z 242.0979 [(C₁₅H₁₄O₃)⁺, calcd 242.0942]; eims m/z 483 (M⁺), 441, 440 (base peak), 396, 294, 292, 266, 254, 243, 242, 241, 228, 227, 226, 213, 212, 211.

ACKNOWLEDGEMENT

The authors thank to Misses K. Suwa and S. Horiyama, Mukogawa Women's University, for measurements of ms and nmr spectra.

REFERENCES AND NOTES

- Part XIV of "Studies on the Constituents of Domestic Citrus Plants";
 Part XIII: Y. Takemura, H. Uchida, M. Ju-ichi, M. Omura, C. Ito,
 K. Nakagawa, T. Ono, and H. Furukawa, <u>Heterocycles.</u>, 1992, 34, 2123.
- H. Furukawa, C. Ito, T. Mizuno, M. Ju-ichi, M. Inoue, I. Kajiura, and M. Omura, <u>J. Chem. Soc.</u>, Perkin <u>Trans.</u> 1, 1990, 1593.
- C. Ito, S. Tanahashi, Y. Tani, M. Ju-ichi, M. Omura, and
 H. Furukawa, <u>Chem. Pharm. Bull.</u>, 1990. 38, 2586.
- J. Reisch, K. Szendri, E. Minker, and I. Novak, <u>Pharmazie</u>, 1972, 27, 208.
- A.W. Fraser and J.R. Lewis, <u>J. Chem. Soc.</u>, <u>Perkin Trans.</u> <u>1</u>, 1973.

.

M. Murayama, E. Seto, T. Okubo, I. Morita, I. Dobashi, and
 M. Maehara, <u>Chem. Pharm. Bull.</u>, 1972, 20, 741.

7. Because of the small quantity of the sample available, it was impossible to detect the other signals.

Received, 16th July, 1992