
HIGHLY REGIOSELECTIVE ALKYLATION OF PTERIDINE

Shizuaki Murata,*^a Kenji Kiguchi,^a and Takashi Sugimoto^b ^aLaboratories of Biophysics and Bioorganic Chemistry, Graduate School of Human Informatics, Nagoya University, Chikusa, Nagoya, 464-01 Japan ^bDepartment of Chemistry, College of General Education, Nagoya University, Chikusa, Nagoya, 464-01 Japan

<u>Abstract</u>—Reaction of 2-amino-4-butoxypteridine with a Grignard reagent or an alkyllithium followed by iodine oxidation gives the 7-substituted pteridine, regioselectively.

2-Amino-4-hydroxypteridines are one of the most important nitrogen heterocycles, since the tetrahydro derivatives are coenzymes in the metabolic systems for neurotransmitters (catecholamines and indoleamine),¹ pyrimidinenucleotides,² and methionine.³ Chemical synthesis of these pteridines has been carried out mainly by using the pyrazine ring-forming condensation of 6-hydroxy-2,4,5-triaminopyrimidine with 2-oxoaldehydes. However, there are several limitations in the condensation. For example, the condensation of 6-hydroxy-2,4,5-triaminopyrimidine with 2-oxopropanal proceeded non regioselectively to give a mixture of 6- and 7-methylpteridines.⁴ Addition of a nucleophile toward 2-amino-4-hydroxypteridine seems to be the most straightforward process to synthesize various substituted pteridines. Since 2-amino-4-hydroxypteridine is very insoluble not only in organic solvents but in water (pH 7) and the pteridine contains 2 acidic hydrogens, it has been difficult to apply the organometallic reagents for <u>C</u>-alkylation of the pteridine. We have recently reported that 2-amino-4-butoxypteridines are soluble in common organic solvents and these are employable for usual treatments in organic synthesis like silica gel column chromatography.⁵ Described herein are preliminary results of the reaction of 2-amino-4-butoxypteridine (1) with organometallic reagents.

2-Amino-4-butoxypteridine (1) was synthesized by condensation of 6-butoxy-2,4,5-triaminopyrimidine, which was prepared <u>in situ</u> by catalytic (5% Pd-C) hydrogenation of 6-butoxy-2,4-diamino-5-nitrosopyrimidine in methanol, with glyoxal in 50% yield. Reaction of 1 with 3 equivalents of a Grignard reagent or an organolithium reagent proceeded in THF at 20 °C. After protonation and oxidative work up by addition of a solution of 2 equiv. of iodine in acetic acid, the 7-substituted pteridine (**2a–e**) was obtained. The regioselectivity was very high, and formation of 6-substituted isomers has not be recognized by ¹H nmr and hplc analyses.⁶ Dialkyl- and polyalkylpteridines have not formed during the reaction. All results are summarized in Table I. Cleavage of the butoxy group in **2** was performed by alkaline hydrolysis (1M KOH, 20 °C, 16 h) to give the 2-amino-4-hydroxypteridine derivative (**3**).⁵

resonance structure of 2-amino-4-alkoxypteridine, the nucleophile predominantly attacked on the carbon. Although yields are relatively low, this reaction is a general and easy procedure for regioisomerically pure 7alkyl-2-amino-4-hydroxypteridines and is the reading investigation for application of organometallic reagent in the chemistry of pteridine.

		Product			
Entry	R-M	No.	Structure	yield/%a	¹ Η nmr (δ/ppm of C ⁶ <u>H</u>) ^b
1	CH3MgŖr	2 a		16	8.41
2	C4H9MgBr	2 b		6	8.40
3	C4H9Li	2 b	—	7	
4	(CH3)2CHMgBr	2c		16	8.44
5	(CH3)3CMgCI	2 d		8	8.66
6	C6H5MgBr	2 e		21	9.04

Table I. Reaction of 1 with an Organometallic Reagent.

^aIsolated yield after silica-gel column chromatography. ^bObserved in CDCl3.

The following is a typical example of the reaction: to a solution of 1 (401 mg, 1.8 mmol) in THF (10 ml) was added slowly at 0 °C a solution of phenylmagnesium bromide, which was prepared from bromobenzene (1.04 g, 6.6 mmol) and magnesium (187 mg, 7.7 mmol) in THF (10 ml). After 2 h stirring at 20 °C, to this was added a solution of I₂ (931 mg, 3.7 mmol) in acetic acid (10 ml). The mixture was diluted by chloroform (50 ml) and washed by saturated aqueous Na₂S₂O₃ solution (50 ml, 5 times), saturated NaHCO₃ (3 x 30 ml),

and water (2 x 30 ml). The organic solution was dried over MgSO4 and solvent was removed in vacuo. The residue was subjected to a column of silica gel eluting with 60% ethyl acetate in toluene. Pure 2e (108 mg, 20% yield) was obtained as yellow powder.

This research is supported by the Grant-in-Aids for Scientific Research, No. 03640447, from the Ministry of Education, Science and Culture, Japan. Authors appreciate the Fujisawa Foundation for support in 1992.

REFERENCES AND NOTES

- Reviews: (a) T. Nagatsu, S. Matsuura, and T. Sugimoto, in <u>Medical Research Reviews</u>, ed. by G. deStevens, Wiley, New York, **1989**, Vol. 9, p. 25–44; (b) S. Kaufman and E. Kaufman, in <u>Folates and Pterins</u>, eds. by S. J. Benkovic and R. L. Blakley, Wiley, New York, **1985**, Vol. 2, pp. 179–249; (c) D. M. Kuhn and W. Lovenberg, in <u>Folates and Pterins</u>, eds. by S. J. Benkovic, and R. L. Blakley, Wiley, New York, **1985**, Vol. 2, pp. 353–382.
- D. V. Santi and P. V. Danenberg, in Folates and Pterins, eds. by S. J. Benkovic and R. L. Blakley, Wiley, New York, 1984, Vol. 1, pp. 345–398.
- R. G. Matthews, in Folates and Pterins, eds. by S. J. Benkovic and R. L. Blakley, Wiley, New York, 1984, Vol. 1, pp. 497–553.
- 2-Amino-4-hydroxy-7-methylpteridine was formed as a major product, but it was isolated only after tedious purification processes. See: D. J. Brown, in <u>Chemistry of Heterocyclic Compounds</u>, ed. by E. C. Taylor, Wiley, New York, **1988**, Vol. 24, Part 3, pp. 56–62.
- 5 S. Murata, T. Sugimoto, S. Ogiwara, K. Mogi, and H. Wasada, Synthesis, 1992, 303.
- 6 ¹H nmr chemical shifts of hydrogen on the C⁶ position (C⁶<u>H</u>) are generally higher than C⁷<u>H</u>. For example, 1 exhibited 2 doublets on δ 8.72 (C⁷<u>H</u>) and 8.43 ppm (C⁶<u>H</u>). The chemical shift of 2-amino-4-butoxy-6-methylpteridine, the regioisomer of 2a, was δ 8.71 ppm. See ref. 5.

Received, 7th December, 1992