CYCLOADDITION REACTIONS WITH AZA-BENZENES, XVIII¹ SYNTHESIS OF 2 PYRINDINES

Hans Neunhoeffer*, Bernd Philipp, Birgit Schildhauer, Ralf Eckrich, and Uwe Krichbaum

Institut für Organische Chemie der Technischen Hochschule, Petersenstrasse 22, D-6100 Darmstadt, Germany

<u>Abstract</u> - The reaction of 1,2,4-triazines ($\underline{1}$) and 1-cyclopentenylpyrrolidine ($\underline{2}$) afforded 6,7-dihydro-5 \underline{H} -[2]-pyrindines ($\underline{3}$) in good yields. Oxidation of $\underline{3}$ to the N-oxides ($\underline{4}$), reaction of $\underline{4}$ with acetic anhydride to 5-acetoxy-6,7-dihydro-5 \underline{H} -[2] pyrindines ($\underline{5}$) and elimination of acetic acid afforded [2] pyrindines ($\underline{7}$). 2-Methyl-2 \underline{H} -[2] pyrindines ($\underline{9}$) were also prepared.

Dedicated to Professor E. C. Taylor on the occasion of his 70th birthday

[2] Pyrindines ($\underline{7}$) are not yet studied very intensively. Better known are the 6,7-dihydro-5 \underline{H} -[2] pyrindines ($\underline{3}$), because many alkaloids belong to this class of compounds. Since we were interested in the 6,7-dihydro-5 \underline{H} -[2] pyrindine alkaloids and in 2 \underline{H} -[2] pyrindines ($\underline{7}$ "), we studied the synthesis of these compounds by Diels-Alder reaction with inverse electron demand of 1,2,4-triazines ($\underline{1}$) with 1-cyclopentenylpyrrolidine ($\underline{2}$). Reactions of $\underline{1}$ with $\underline{2}$ were already reported by Sauer et al. And Boger et al. Reaction of the 1,2,4-triazines ($\underline{1}\underline{a}$ - \underline{p}) with $\underline{2}$ afforded the 6,7-dihydro-5 \underline{H} -[2] pyrindines ($\underline{3}\underline{a}$ - \underline{p}) in yields between 55% and 86%. Oxidation of $\underline{3}\underline{a}$ - $\underline{1}$ with perbenzoic acid gave 6,7-dihydro-5 \underline{H} -[2] pyrindine 2-oxides ($\underline{4}\underline{a}$ - $\underline{1}$) in yields between 54% and 95%. Heating $\underline{4}\underline{a}$ - \underline{k} with acetic anhydride led to the isolation of 5-acetoxy-6,7-dihydro-5 \underline{H} -[2] pyrindines ($\underline{5}\underline{a}$ - \underline{k}) in yields between 17 and 59%. Hydrolysis of $\underline{5}\underline{a}$ - \underline{d} and $\underline{5}\underline{g}$ - \underline{i} with \underline{H}_3 PO₄ and $\underline{5}\underline{e}$ with KOH afforded the 5-hydroxy-6,7-dihydro-5 \underline{H} -[2] pyrindines ($\underline{6}\underline{a}$ - \underline{e}) and ($\underline{6}\underline{g}$ - \underline{i}). Treatment of $\underline{5}\underline{a}$ - \underline{g} with conc. phosphoric acid for 2 days at 140°C gave [2] pyrin-

dines $(\underline{7}\underline{a}-\underline{c})$. Only the $5\underline{H}$ - $(\underline{7}')$ and $7\underline{H}$ -tautomer $(\underline{7})$ could be detected by nmr spectroscopy, but no $2\underline{H}$ -tautomer $(\underline{7}")$.

Alkylation of $\underline{5}\underline{a}-\underline{f}$ with dimethyl sulfate afforded the 5-acetoxy-6,7-dihydro-2-methyl- $5\underline{H}-\begin{bmatrix}2\end{bmatrix}$ pyridinium salts ($\underline{8}\underline{a}-\underline{f}$). $\underline{8}\underline{b}-\underline{f}$ were transformed into the 2-methyl- $2\underline{H}-\begin{bmatrix}2\end{bmatrix}$ pyrindines ($\underline{9}\underline{b}-\underline{f}$), when treated with conc. phosphoric acid. All compounds were characterized by their spectra and by elemental analysis.

EXPERIMENTAL

6,7-Dihydro-5H- $\begin{bmatrix} 2 \end{bmatrix}$ pyrindines ($\underbrace{3a}$ - \underline{p}): Compound($\underbrace{2}$)(3.43 g, 25 mmol) was added dropwise to $\underbrace{1a}$ - \underline{p} (10 mmol) (neat or in 25 ml of methylene chloride) under nitrogen. The mixture was stirred for 16 h and evaporated. The residue was purified by column chromatography on silica gel with methylene chloride for $\underbrace{3a}$, \underline{c} , \underline{d} , \underline{q} , $\underline{1}$ - \underline{n} , ethyl acetate for $\underbrace{3b}$, \underline{h} - \underline{k} , \underline{o} , \underline{p} , or ether for $\underbrace{3e}$, \underline{f} .

6,7-Dihydro-5H-[2] pyrindine N-oxides ($\underline{4a}$ - $\underline{1}$): To $\underline{3a}$ - \underline{n} (10 mmol) in methylene chloride (20 ml) perbenzoic acid (20 ml) in methylene chloride (20 ml) was added. The mixture was stirred for 24 h at room temperature. To $\underline{3a}$, \underline{g} , \underline{h} , \underline{k} , \underline{m} , \underline{n} perbenzoic acid (10 mmol) was added, and the mixture stirred for further 24 h. The methylene chloride solution of $\underline{3a}$, \underline{i} , \underline{m} , \underline{n} with perbenzoic acid was heated for 5 h to reflux. The solution was washed with saturated sodium bicarbonate solution (2 x 20 ml), dried over magnesium sulfate and evaporated. The residue was purified by column chromatography on aluminum oxide with methylene chloride for $\underline{4a}$, chloroform for $\underline{4c}$, \underline{d} , $\underline{1}$, methanol for $\underline{4b}$, or ether for $\underline{4i}$. In cases of $\underline{3m}$ and $\underline{3n}$, the starting material was recovered. $\underline{5-Acetoxy-6,7-dihydro-5H-[2]}$ pyrindines ($\underline{5a}$ - \underline{k}): $\underline{4a}$ - \underline{k} (10 mmol) were heated in acetic anhydride (5 ml) for 3 h to 80°C. After removal of the acetic anhydride, the residue was dissolved in ether (20 ml), washed with saturated sodium bicarbonate solution (10 ml), and dried over magnesium sulfate. Compounds ($\underline{5a}$, \underline{q} , \underline{h}) were isolated by addition of hexane. In all other cases, the

etheral extract was evaporated, and the residue was purified by column chromatography on silica gel with ether for $\underline{5}\underline{b}$, \underline{e} , \underline{f} , \underline{i} , \underline{i} , chloroform for $\underline{5}\underline{c}$, \underline{d} , or methylene chloride for $\underline{5}\underline{k}$.

5-Hydroxy-6,7-dihydro-5H-[2] pyrindines ($\underline{6a}$ - \underline{d} , \underline{g} - \underline{i}): $\underline{5a}$ - \underline{d} , \underline{g} - \underline{i} (2 mmol) were heated in conc. phosphoric acid (4 ml) under nitrogen for 2 h to 100° C. The mixture was neutralized with 6 N NaOH, diluted with water (10 ml), and extracted with ether (3 x 20 ml). The organic phases were dried over magnesium sulfate, evaporated, and the residues were purified by column chromatography on silica gel with ether for $\underline{6a}$, \underline{h} , ether then ethyl acetate for $\underline{6i}$, ethyl acetate for $\underline{6b}$, or methylene chloride for $\underline{6d}$, \underline{g} . Compound $\underline{6c}$ separated on addition of water and was isolated by filtration.

5-Hydroxy-6,7-dihydro-1-(4-tolyl)-5H-[2] pyrindine ($\underline{6e}$): To $\underline{5e}$ (1 mmol) in methanol (5 ml) KOH (33.6 mg, 6 mmol) in methanol (10 ml) was added with stirring. After 20 h at room temperature, the mixture was evaporated, and the residue was chromatographed on silica gel column. Compound ($\underline{5e}$) was eluted with ether, and $\underline{6e}$ with ethyl acetate.

5-Acetoxy-2-methyl-6,7-dihydro-5H-2 pyridinium methosulfates ($8\underline{a}$ - \underline{f}): $5\underline{a}$ - \underline{f} (2.0 mmol) in dry toluene (20 ml) were stirred with dimethyl sulfate (2.0 mmol) for 1 week at room temperature. The precipitate was filtered and washed with toluene.

2-Methyl-2H-2 pyrindines $(\underline{9b}-\underline{f})$: Compounds $(\underline{8b}-\underline{f})$ (1,0 mmol) were heated in conc. phosphoric acid (3 ml) under nitrogen for 16 h at 140° C. The mixture was poured to ice under nitrogen, and ether (25 ml) was added to the mixture. The aqueous layer was made alkaline with 6 N NaOH until pH 10. The mixture was diluted with water (30 ml) and extracted with ether (3 x 35 ml). The organic phases were dried over magnesium sulfate and evaporated.

5H-(7') and 7H-2 Pyrindines (7a-c): Compounds (5a-c), 6a-c) (2.5 mmol) were heated with conc. phosphoric acid (5 ml) under nitrogen for 2 days at 140° C. The mixture was diluted with water (20 ml), neutralized with 5 N NaOH, and

extracted with methylene chloride (3 x 25 ml). The organic phases were dried with magnesium sulfate, evaporated and purified by column chromatography on silica gel with methylene chloride for $\frac{7}{2}$, ether for $\frac{7}{2}$, or chloroform for $\frac{7}{2}$.

				•	calco	i /fou	ınd
No.	yield	mp (^O C)	¹ H-nmr, 60-MHz, CDCl ₃ , G-values	formula	С	Н	N
<u>3a</u>	82%	176-178 ether	1.96 (2H, quin, J=7 Hz), 2.78 (2H, t, J=7 Hz), 3.15 (2H, t, J=7 Hz), 7.21 (13H, m), 7.85 (2H, m)	^C 26 ^H 21 ^N	89.88 89.81		
<u>3</u> <u>b</u>	68%	59 ether	2.08 (2H, quin, J=7 Hz), 3.00 (4H, t, J=7 Hz), 7.38 (5H, s), 8.37 (2H, s)	C ₁₄ H ₁₃ N	86.12 86.10		
<u>3</u> ⊆	78%	130-132 CH ₂ Cl ₂	1.98 (2H, quin, J=7 Hz), 2.38 (3H, s), 3.04 (4H, m), 7.25 (2H, d, J=8 Hz), 7.46 (5H, m), 7.70 (2H, d, J=8 Hz), 8.52 (1H, s)	с ₂₁ н ₁₉ N	88.38 88.43		
<u>3d</u>	86%	104-105 CH ₂ Cl ₂	2.05 (2H, quin, J=7 Hz), 2.92 (4H, m), 7.25 (10H, m), 8.62 (1H, s)	^C 20 ^H 17 ^N	88.25 88.61		
<u>3e</u>	67%		1.96 (2H, quin, J=7 Hz), 2.35 (3H, s), 2.95 (4H, m), 7.05 (1H, d, J=5 Hz), 7.08-7.10 (4H, m), 8.44 (1H, d, J=5 Hz)	с ₁₅ н ₁₅ м	86.08 85.80		
<u>3f</u>	60%		2.02 (2H, quin, J=7 Hz), 3.00 (4H, m), 7.10 (1H, d, J=5 Hz), 7.28-7.88 (5H, m), 8.46 (1H, d, J=5 Hz)	C ₁₄ H ₁₃ N	86.12 86.23		
<u>3g</u>	55%	101 ether	2.10 (2H, quin, J=7 Hz), 2.95 (2H, t, J=7 Hz), 3.26 (2H, t, J=7 Hz), 3.96 (3H, s), 7.36 (3H, m), 7.65 (1H, s), 7.93 (2H, m)	^C 16 ^H 15 ^{NO} 2	75.87 75.99		
<u>3ħ</u>	70%	136-137 136-137 ⁴	2.03 (2H, quin, J=7 Hz), 2.76 (2H, t, J=7 Hz), 3.36 (2H, t, J=7 Hz), 3.93 (3H, s), 7.13 (10H, m)				
<u>3i</u>	88%	128-130 ether	2.15 (2H, quin, J=7 Hz), 3.15 (4H, t, J=7 Hz), 3.93 (3H, s), 3.96 (3H, s), 7.36 (2H, d, J=8 Hz), 7.70 (2H, d, J=8 Hz)	C ₁₈ H ₁₆ ClNO ₄	62.52 62.68		

					calco	l /fou	ınd
No.	yield	mp (°C)	¹ H-nmr, 60-MHz, CDCl ₃ , -values	formula	С	н	N
<u>3i</u>	70%		2.07 (2H, quin, J=7 Hz), 2.88 (2H, t, J=7 Hz), 3.00 (2H, t, J=7 Hz), 5.93-6.56 (4H, m), 7.37-7.57 (2H, m), 8.49 (1H, s)	^C 16 ^H 13 ^{NO} 2	76.48 76.68		
<u>3k</u>	68%	104 ether	2.03 (2H, quin, J=7 Hz), 2.33 (3H, s), 3.06 (4H, t, J=7 Hz), 3.86 (3H, s), 3.90 (3H, s), 7.13 (2H, d, J=8 Hz), 7.60 (2H, d, J=8 Hz)	^C 19 ^H 19 ^{NO} 4	70.14 70.23		
<u>3</u> 1	78%	112-113 CH ₂ Cl ₂	2.04 (2H, quin, J=7 Hz), 2.06 (3H, s), 2.87 (4H, m), 7.14 (10H, m)	C ₂₁ H ₁₉ N	88.38 88.43		
<u>3m</u>	83%	157-158 CH ₂ Cl ₂	2.02 (2H, quin, J=7 Hz), 2.43 (3H, s), 2.81 (2H, t, J=7 Hz), 3.20 (2H, t, J=7 Hz), 7.20 (12H, m), 7.82 (2H, d, J=8 Hz)	с ₂₇ н ₂₃ м	89.71 89.38		
<u>3n</u>	77%	130-131 CH ₂ Cl ₂	1.97 (2H, quin, J=7 Hz), 2.22 (3H, s), 2.30 (3H, s), 2.35 (3H, s), 2.75 (2H, t, J=7 Hz), 3.16 (2H, t, J=7 Hz), 7.12 (10H, m), 7.82 (2H, d, J=8 Hz)	^C 29 ^H 27 ^N	89.42 89.50		
<u>3</u> <u>o</u>	60%	129-130 ether	2.10 (2H, quin, J=7 Hz), 3.04 (2H, t, J=7 Hz), 3.44 (2H, t, J=7 Hz), 4.04 (3H, s), 7.47 (5H, s), 8.57 (1H, s)	^C 16 ^H 15 ^{NO} 2	75.87 76.02		
<u>3p</u>	61%	69-70 ether	2.13 (2H, quin, J=7 Hz), 2.60 (3H, s), 2.83 (2H, t, J=7 Hz), 3.13 (2H, t, J=7 Hz), 3.86 (3H, s), 3.93 (3H, s)	c ₁₃ H ₁₅ NO ₄ S	55.50 55.49		
<u>4ª</u>	488	209-210 CH ₂ Cl ₂	1.98 (2H, m), 2.80 (4H, m), 7.18 (15H, m)	^C 26 ^H 21 ^{NO}	85.92 86.16		
<u>4</u> <u>b</u>	95%	74-75 ether	2.12 (2H, quin, J=7 Hz), 2.95 (4H, t, J=7 Hz), 7.41 (5H, m), 8.80 (2H, s)	$C_{14}H_{13}NO$	79.60 79.73		

		_	٠	calco	i /fou	ınd
No.	yield mp (^O C)	H-nmr, 60-MHz, CDCl ₃ , d-values	formula	C	H	N
<u>4</u> c	82% 177-178 CH ₂ Cl ₂	2.07 (2H, quin, J=7 Hz), 2.44 (3H, s), 2.94 (4H, m), 7.39 (9H, m), 8.30 (1H, s)	с ₂₁ н ₁₉ nо	83.69 83.72		
<u>4d</u>	89% 199-200 CH ₂ Cl ₂	2.10 (2H, quin, J=7 Hz), 2.86 (4H, m), 7.07 (10H, m), 8.28 (1H, s)	C ₂₀ H ₁₇ NO	83.59 83.86		
<u>4e</u>	75% 131-132 MeCO ₂ Et	2.07 (2H, quin, J=7 Hz), 2.40 (3H, s), 2.84 (4H, m); 6.95-7.53 (5H, m), 8.15 (1H, d, J=7 Hz)	C ₁₅ H ₁₅ NO	79.97 79.96		
<u>4£</u>	77% 110 ether/ CH ₂ Cl ₂	2.07 (2H, quin, J=7 Hz), 2.86 (4H, m), 7.06 (1H, d, J=7 Hz), 7.49 (5H, s), 8.17 (1H, d, J=7 Hz)	C ₁₄ H ₁₃ NO	79.59 79.67		
<u>4g</u>	43% 149-151 CH ₂ Cl ₂ /ether	2.16 (2H, quin, J=7 Hz), 2.93 (4H, t, J=7 Hz), r 3.96 (3H, s), 7.33 (4H, m), 7.73 (2H, m)	C ₁₆ H ₁₅ NO ₃	71.36 71.55		
<u>4</u> <u>h</u>	50% 170-172 ether	2.10 (2H, quin, J=7 Hz), 2.75 (2H, t, J=7 Hz), 3.03 (2H, t, J=7 Hz), 4.00 (3H, s), 7.05 (10H, m)	C ₂₂ H ₁₉ NO ₃	76.50 76.60		
<u>4i</u>	54% 179-180 methanol	2.11 (2H, quin, J=7 Hz), 2.86 (2H, t, J=7 Hz), 3.28 (2H, t, J=7 Hz), 3.90 (3H, s), 3.97 (3H, s), 7.46 (4H, s)	C ₁₈ H ₁₆ ClNO ₅	59.76 59.49		
<u>4i</u>	50% 161-163 MeCO ₂ Et	2.12 (2H, quin, J=7 Hz), 2.94 (4H, m), 5.97 (1H, d, J=7 Hz), 6.40 (2H, m), 7.09 (1H, d, J=7 Hz), 7.42 (2H, m), 8.16 (1H, s)	^C 16 ^H 13 ^{NO} 3	71.90 71.68		
<u>4k</u>	56% 122-124 CH ₂ Cl ₂ /ether	2.10 (2H, quin, J=7 Hz), 2.40 (3H, s), 2.83 (2H, t, J=7 Hz), 3.26 (2H, t, J=7 Hz), 3.90 (3H, s), 4.00 (3H, s), 7.30 (4H, m)	с ₁₉ н ₁₉ NО ₅	66.85 66.99		
<u>41</u>	66% 175-176 CH ₂ Cl ₂	2.08 (2H, quin, J=7 Hz), 2.53 (3H, s), 2.89 (4H, m), 7.09 (10H, m)	C ₂₁ H ₁₉ NO	83.69 83.57		

		_		calcd	l /fou	ınd
No.	yield mp (^O C)	H-nmr, 60-MHz, CDCl ₃ , O-values	formula	С	Н	N
<u>5a</u>	59% 199-200	1.70 (3H, s), 2.33 (2H, m), 3.29 (2H, m),	C ₂₈ H ₂₃ NO ₂	82.94	5.72	3.45
	ether	6.18 (1H, m), 7.34 (13H, m), 7.95 (2H, m)	•	82.92	5.63	3.45
<u>5</u> <u>b</u>	48% 108-109	1.69 (3H, s), 2.50 (2H, m), 3.02 (2H, m), 6.36	$^{\rm C}_{16}^{\rm H}_{15}^{\rm NO}_{2}$	75.87	5.97	5.53
	CH ₂ Cl ₂ /hexa	ne (1H, m), 7.36 (5H, s), 8.44 (1H, s), 8.52 (1H, s)		76.09	6.05	5.46
<u>5⊆</u>	48% 122-123	1.72 (3H, s), 2.32 (2H, m), 2.40 (3H, s), 3.19	$c_{23}^{\rm H}_{21}^{\rm NO}_2$	80.44		
	CHCl ₃ /hexan	e (2H, m), 6.38 (1H, m), 7.47 (9H, m), 8.55 (1H, s)		80.51	6.12	4.10
<u>5₫</u>	47% 218-220	1.68 (3H, s), 2.43 (2H, m), 3.12 (2H, m), 6.22	$^{\mathrm{C}}_{22}^{\mathrm{H}}_{19}^{\mathrm{NO}}_{2}$			
	CHC1 ₃	(1H, m), 7.20 (10H, m), 8.68 (1H, s)		80.34	5.80	4.36
<u>5e</u>	43% 106-197	2.12 (3H, s), 2.41 (3H, s), 2.47 (2H, m), 3.14	$^{\mathrm{C}}_{17}^{\mathrm{H}}_{17}^{\mathrm{NO}}_{2}$	76.38		
	ether	(2H, m), 6.20 (1H, m), 7.15-7.79 (5H, m), 8.57		76.63	6.44	5.23
		(1H, d, J=5 Hz)				
<u>5</u> £	42% 62-63	2.11 (3H, s), 2.45 (2H, m), 3.18 (2H, m), 6.21	^C 16 ^H 15 ^{NO} 2	75.87 76.14		
-		ne (1H, m), 7.24-7.90 (6H, m), 8.60 (1H, d, J=5 Hz)				
<u>5</u> ₫	50% 116-118	2.10 (3H, s), 2.55 (2H, m), 3.40 (2H, m), 4.00 te (3H, s), 6.20 (1H, m), 7.40 (3H, m), 7.93 (3H, m)	^C 18 ^H 17 ^{NO} 4	69.44 69.56		
F 1-						
<u>5h</u>	46% 115-117 ether	1.70 (3H, s), 2.43 (2H, m), 3.43 (2H, m), 4.06 (3H, s), 6.26 (1H, m), 7.26 (1OH, m)	^C 24 ^H 21 ^{NO} 4	74.40 74.73		
c :			G H G110			
<u>5i</u>	45% 110-112 CH_Cl_/heya	2.07 (3H, s), 2.53 (2H, m), 3.18 (2H, m), 3.87 ine (3H, s), 3.97 (3H, s), 6.44 (1H, m), 7.58 (4H, m)	^C 20 ^H 18 ^{ClNO} 6	59.49		
E 4	17% 124					
<u> 5</u> i		1.89 (3H, s), 2.48 (2H, m), 3.02 (2H, m), 5.91- ne 6.55 (5H, m), 7.46 (2H, m), 8.60 (1H, s)	^C 18 ^H 15 ^{NO} 4	69.98		
E 12		2.10 (3H, s), 2.43 (3H, s), 2.50 (2H, m), 3.26	C H NO			
<u>5</u> <u>k</u>		ne (2H, m), 3.93 (3H, s), 4.00 (3H, s), 6.50 (1H, s)	C ₂₁ H ₂₁ NO ₆	65.77		
		7.30 (2H, d, J=8 Hz), 7.73 (2H, d, J=8 Hz)	,	Ŧ - · ·	-	

					calco	i /fo	ınd
No.	yield	mp (^O C)	¹ H-nmr, 60-MHz, CDCl ₃ , O-values	formula	C	Н	N
<u>6a</u>	91%		1.70 (1H, s), 2.25 (2H, m), 3.33 (2H, m), 5.25 (1H, m), 7.30 (13H, m), 7.85 (2H, m)	C ₂₆ H ₂₁ NO	85.92 86.10		
<u>€</u> ₽	79%		2.12 (2H, m), 3.12 (3H, m), 5.23 (1H, m), 7.25-7.88 (5H, m), 8.41 (2H, s)	T4 T2	79.59 79.52		
<u>6c</u>	61%)2.04 (2H, m), 2.39 (3H, s), 3.38 (3H, m), 5.07 (1H, m), 7.20-7.97 (9H, m), 8.59 (1H, s)	с ₂₁ н ₁₉ NO	83.29 83.43		
<u>6</u> 료	89%		2.01 (2H, m), 2.10 (1H, s), 2.95 (2H, m), 5.15 (1H, m), 7.15 (10H, m), 8.50 (1H, s)	c ₂₀ H ₁₇ NO	83.64 83.52		
<u>6e</u>	72%	128-129 ether	2.10 (2H, m), 2.47 (3H, s), 2.98 (2H, m), 3.72 (1H, s), 5.15 (1H, t, J=7 Hz), 7.10-7.71 (5H, m), 8.47 (1H, d, J=5 Hz)	с ₁₅ н ₁₅ NO	79.97 79.71		
<u>6</u> g	21%	115-118 " ether)1.98 (1H, dddd, J= 7; 8; 8,5; 13 Hz), 2.22 (1H, s), 2.61 (1H, dddd, J=3.5; 7; 8; 13 Hz), 3.16 (1H, td, J=8; 18 Hz), 3.48 (1H, ddd, J=3.5; 8; 18 Hz), 4.00 (3H, s), 5.30 (1H, t, J=7 Hz), 7.45 (3H, m), 7.94 (1H, s), 8.04 (2H, m)	c ₁₆ H ₁₅ NO ₃	71.36 71.12		
<u>6</u> <u>b</u>	51%	89 *) ether	2.07 (2H, m), 3.27 (2H, m), 3.32 (1H, s), 3.88 (3H, s), 4.84 (1H, m), 7.21 (5H, s), 7.29 (5H, s)	с ₂₂ н ₁₉ NO ₃	76.50 76.31		
<u>61</u>	45%	106 +) ether	2.03 (2H, m), 2.80 (1H, s), 3.21 (2H, m), 3.93 (6H, s), 5.49 (1H, m), 7.42-8.02 (4H, m)	^C 18 ^H 16 ^{ClNO} 5	59.76 59.60		
<u>7</u> <u>a</u>	95%	183-185 CH ₂ Cl ₂	3.37, 3.78 (2H, t, J=2 Hz), 6.67, 6.79 (2H, m), 7.00-7.68 (13H, m), 7.89-8.20 (2H, m)	с ₂₆ н ₁₉ NO	90.40 90.13		
<u>7</u> ₽	34%	85-87 ether	3.47, 3.71 (2H, m), 6.27, 6.84 (2H, m), 7.42, 7.47 (5H, s), 8.49, 8.64 (2H, s)	C ₁₄ H ₁₁ N	87.01 87.23		

Š.	yield	(၁ _၀) dw	¹ H-nmr, 60-MHz, CDCl ₃ , G-values	formula	calcd /found C H N
<u>7</u> c	73%	156-158 ") CHCl ₃	2.43 (3H, s), 3.59, 3.74 (2H, t, J=1.9 Hz), 6.66, 6.85 (1H, dt, J=5.6; 1.9 Hz), 7.12, 7.22 (1H, dt, J=5,6; 1.9 Hz), 7.30-7.85 (9H, m), 8.57, 8.66 (1H,	$c_{21}H_{17}N$ s)	89.01 6.05 4.94 88.86 6.13 4.87
ଫା ଆ	12%	230-232 *)	(3H, s), 3.94 (3H, s), 6.35 (1H, m), 7.31 (15H, m)	c_{30} $_{429}$ $_{85}$	67.78 5.50 2.63 68.03 5.23 2.55
.데 8위	92%	102-103 *) toluene	1.59 (3H, s), 2.52 (2H, m), 3.22 (2H, m), 3.37 (3H, s), 4.42 (3H, s), 6.02 (1H, m), 7.57 (5H, m), 9.00 (2H, s)	$c_{18}^{\mathrm{H}_{21}^{\mathrm{NO}}_{6}^{\mathrm{S}}}$	56.98 5.58 3.69 56.63 5.58 3.64
©II ∞II	79%	148-150 *) toluene) 1.63 (3H, s), 2.12 (2H, m), 2.48 (3H, s), 2.85 (2H, m), 3.56 (3H, s), 4.20 (3H, s), 6.61 (1H, m), 7.46 (9H, m), 8.90 (1H, s)	C ₂₅ H ₂₇ NO ₆ S	63.95 5.80 2.98 63.60 5.74 2.92
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	808	106-107 *)) 2.29 (3H, s), 2.58 (2H, m), 3.25 (2H, m), 3.38 (3H, s), 4.00 (3H, s), 6.28 (1H, m), 7.21 (10H, s), 9.26 (1H, s)	c_{24} H_{25} NO_6 s	63.28 5.53 3.08 63.52 5.60 2.94
∞II OH	81%	90-91 *)	2.11 (3H, s), 2.41 (3H, s), 2.75 (2H, m), 3.15 (2H, m), 3.37 (3H, s), 4.06 (3H, s), 6.32 (1H, m), 8.05 (1H, d, J=7 Hz), 9.05 (1H, d, J=7 Hz)	c ₁₉ H ₂₃ NO ₆ S	58.00 5.89 3.56 58.29 5.90 3.34
(네) (에)	% 28 %	110-112 *)) 2.12 (3H, s), 2.69 (4H, m), 3.37 (3H, s), 4.03 (3H, s), 6.37 (1H, m), 7.66 (5H, s), 8.10 (1H, d, J=7 Hz), 9.06 (1H, d, J=7 Hz)	c_{18} H_{21} NO_6 S	56.98 5.58 3.69 56.75 5.41 3.40
ପ୍ରା	84%	101 ether	3.76 (3H, s), 6.54-6.84 (3H, m), 7.24-7.83 (7H, m)	$c_{15}H_{13}N$	86.92 6.32 6.76 86.59 6.13 6.49
OII OII	978	130 toluene	2.44 (3H, s), 3.68 (3H, s), 6.33 (1H, m), 6.64 (1H, m), 7.02 (1H, s), 7.16-7.90 (10H, m)	$c_{22}^{H_{19}^{N}}$	88.85 6.44 4.71 88.58 6.31 4.56

calcd /found	C ₂₁ H ₁₇ N 89.01 6.05 4.71 88.86 5.88 4.72	C ₁₆ H ₁₅ N 86.84 6.83 6.33	H, m) C ₁₅ H ₁₃ N 86.92 6.32 6.76
formula C H N		86.87 6.57 6.17	86.64 6.18 6.53
H-nmr, 60-MHz, CDCl ₃ , C-values	3.59 (3H, s), 6.25 (1H, m), 6.78 (1H, m) 7.00-7.45 (11H, m), 8.05 (1H, s)	2.43 (3H, s), 3.55 (3H, s), 6.25 (1H, m), 6.50 (1H, m), 6.78-7.35 (7H, m)	3.61 (3H, s), 6.11-6.65 (2H, m), 6.84-7.66 (8H, m) C ₁₅ H ₁₃ N
No. yield mp ($^{\circ}$ C) 1 H-1	58% 146-148	86% 87-88	79% 104-105
	ether	ether	ether
No. Y	D		भा

*) $\left[D_6\right]$ DMSO +) $\left[D_6\right]$ acetone ") 300-MHz

REFERENCES

- 1. Part XVII: H. Neunhoeffer, and M. Bachmann, <u>Liebigs Ann. Chem.</u>, 1985, 1263.
- 2. H.-J. Timpe and A. V. El'tsov, Adv. Heterocycl. Chem., 1983, 33, 185.
- 3. G. M. Strunz and J. A. Findlay, "The Alkaloids", (Ed. A. Brossi); Vol. 26, 89-183, Academic Press, New York 1985.
- 4. W. Dittmar, J. Sauer, and A. Steigel, Tetrahedron Lett., 1969, 5171.
- D. L. Boger and J. S. Panek, <u>J. Org. Chem.</u>, 1981, <u>46</u>, 2179;
 D. L. Boger, J. S. Panek, and M. M. Meier, <u>J. Org. Chem.</u>, 1982, <u>47</u>, 895.

Received, 7th December, 1992