DIRECTED 2-METALATION OF N, N-DIETHYL 0-3-(4-TRIMETHYLSILYL)PYRIDYL CARBAMATE. A SILICON PROTECTION ROUTE FOR HIGHLY SUBSTITUTED PYRIDINES[†]

Masao Tsukazaki and Victor Snieckus*

Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract- LiTMP metalation of N,N-diethyl O-3-(4-trimethylsilyl)pyridyl carbamate (4) followed by quenching with a number of carbon and heteroatom electrophiles affords a variety of 2-substituted derivatives (5) (Table 2) thus providing a versatile new methodology for the synthesis of polysubstituted pyridines.

The Directed *ortho* Metalation (DoM) reaction is currently a fertile playground for the regiospecific construction of polysubstituted aromatics.¹ In the context of heteroaromatics, the DoM reaction for π -excessive (furan, thiophene) rings is also a long recognized and widely explored process;² however, its application to π -deficient (pyridine, diazine) systems³ was detained by the prior evidence that such low-LUMO MO substrates undergo facile nucleophilic attack by RLi and RMgX reagents. Despite this precognition, the past decade has witnessed the development of a number of DMGs, already of demonstrated utility in aromatic DoM chemistry, which promote pyridine *ortho* deprotonation thus allowing the emergence of new pyridine synthetic methodologies.³ The body of knowledge for 3-DMG-substituted pyridines (Scheme 1) indicates primarily a 4-metalation regiochemistry for a variety of carbon- and heteroatom-based DMGs, 2-deprotonation has been achieved only for DMG = X and OR under carefully chosen conditions.⁴ In continuation of our DoM studies on isomeric *O*-pyridyl carbamates,⁴ⁱ we have found that 2-deprotonation of *O*-3-pyridyl carbamate can be achieved by adapting the silicon protection tactic⁵ for the more reactive C-4 metalation site (4). These results, disclosed herein, provide new synthetic regimens for the regiospecific construction of substituted pyridines which are inaccessible by available routes.

Scheme 1

DMG = Directed Metalation Group

$$A^{4a}$$
, CONEt₂,^{4b} OMOM,^{4c} X (F,^{4d} Br,^{4e} Cl^{4f}),
OR (R = Me,^{4g} Et,^{4h} Bu,^{4h} CH₂Ph^{4h}), OCONEt₂,⁴ⁱ NHCO^tBu^{4j}

[†] Dedicated to Professor Ted Taylor in celebration of his 70th birthday and in recognition of his inspiring adventures in heterocyclic chemistry.

Powerful DMGs (e.g. CONEt₂, oxazoline, OMOM) promote kinetic 4-deprotonation presumably due to a strong base-DMG complexation effect while weak DMGs (e.g. X, OR) may favor 2-metalation owing to a preferred base-N-lone pair coordination. For the O-3-pyridyl carbamate, we found that the earlier observations of 4-deprotonation using s-BuLi/TMEDA⁴ⁱ or LDA⁶ were duplicated also by metalation with *t*-BuLi or mesityl-Li in THF or Et₂O solution as evidenced by CD₃OD quench. However, when 1 (Scheme 2) was subjected to 2.2 equiv. of LDA followed by treatment with excess TMSCl, the 2,4-disilylated derivative (2) was obtained in 98% yields.⁷ Following original observations by Pinkerton and Thames⁸ of *ipso* carbo-desilylation of 2-TMS-pyridine, 2 was treated with excess benzoyl chloride to give 3, an indication of a potential mild alternative to the metalation protocol for the introduction of carbon substituents into the 2-position (**Table 2**).

The observed formation of 2 suggested that 2-deprotonation could be achieved on the 4-TMS-carbamate (4).7 In the first set of experiments using several RLi reagents and (PhS)₂ as the electrophile (**Table 1**), low to modest yields of products(**5f**)(E = SPh) were obtained. Thus both s-BuLi/TMEDA and t-BuLi gave unsatisfactory results in THF (Entries 1 and 2). Somewhat higher yields were observed using t-BuLi in Et₂O at -78 °C (Entry

Table 1. Reactions of 4 with RLi Bases Using (PhS)₂ as the Electrophile

Entry	Base	Solvent	Temp, °C	Time, min	Yield of 5f, %
1	s-BuLi/TMEDA	THF	-78	10	31
2	t-BuLi	THF	-78	15	29
3	t-BuLi	Et ₂ O	-78	15	43
4	t-BuLi	Et ₂ O	-110	10	49
5	t-BuLi/HMPA	Et ₂ O	-110	10	58
6	n-BuLi	THF	-78	10	()a
7	Mesityl-Li	THF	-78→-15	60	Ор

^a Addition of *n*-BuLi to the pyridine ring of **4** was observed. ^b Starting material was recovered.

3) and -110 °C (Entry 4) while the best result was realized using t-BuLi/HMPA (Entry 5) at the latter temperature. *n*-BuLi and mesityl-Li proved completely unsatisfactory (Entries 6 and 7).

Entry	Methoda	E+	Product	Е	Yield, %	
1	A	CD ₃ OD	5a	D	87 ^b	
2	A '	ⁱ PrCHO	5 b	CH(OH)Pr ⁱ	48	
3	Α	PhCHO	5c	CH(OH)Ph	82	
4	Α	Ph ₂ CO	5d	C(OH)Ph ₂	56	
5	Α	PhCOCi	3	COPh	41	
6	В	CCl ₃ CCl ₃	5e	Cl	64	
7	В	(PhS) ₂	5 f	SPh	79	
8	В	Et ₃ SiCl	5 g	SiEt ₃	89	
9	B	PhSeCl	5h	SePh	72	

Table 2. Synthesis of Pyridine Derivatives Using LiTMP as Base

^a Method A: 1.5 equiv. LiTMP. Method B: 1.2 equiv. of LiTMP. ^b 58% d₁-incorporation by ms.

Conditions for satisfactory and convenient 2-deprotonation of 4 were achieved using the hindered strong base, LiTMP (**Table 2**). Thus, in appreciation of the previous experience of Iwao on pyridine amides,⁹ a short metalation time (5 min) at -78 °C followed by rapid electrophile quench led to 2-substituted products.¹⁰ Preliminary results show that a variety of carbon and heteroatom electrophiles can be introduced in modest to good yields.¹¹ Furthermore, desilylation in a selected case using TBAF¹² led to the formation of **6** thus opening the door for further DoM chemistry.

In summary, using optimized conditions (LiTMP/THF/-78 °C/5 min), 2-deprotonation of O-3-pyridyl carbamates has been achieved, $4\rightarrow 5$ by taking advantage of the silicon protection protocol⁵ at C-4. In view of the facile unmasking of the reactive C-4 metalation site in 5 and the regioselective *ipso* carbo-desilylation reactivity of 2, broader use of the developed methodology for the construction of substituted pyridines may be anticipated.¹³

ACKNOWLEDGEMENT

We are grateful to NSERC Canada and Monsanto Chemical Co. for financial support and the University of Waterloo for a scholarship to M.T.

REFERENCES AND FOOTNOTES

- 1. V. Snieckus, Chem. Rev., 1990, 90, 879.
- S. Gronowitz, 'The Chemistry of Heterocyclic Compounds,' Vol. 44, ed. by A. R. Weinberger and E. C. Taylor, Wiley, New York, 1985.
- 3. G. Queguiner, F. Marsais, V. Snieckus, and J. Epsztajn, Advan. Heterocycl. Chem., 1992, 52, 187.
- a) A. I. Meyers and R. A. Gabel, J. Org. Chem., 1982, 47, 2633; b) J. Epsztajn, Z. Berski, J. Z. Brzezinski, and A. Jozwiak, Tetrahedron Lett., 1980, 21, 4739; M. Watanabe and V. Snieckus, J. Am.

Chem. Soc., 1980, 102, 1457; c) M. R. Winkle and R. C. Ronald, J. Org. Chem., 1982, 47, 2101; d)
G. W. Gribble and M. G. Saulnier, Tetrahedron Lett., 1980, 21, 4137; F. Marsais and G. Queguiner, Tetrahedron, 1983, 39, 2009; e) F. Marsais, P. Breant, A. Ginguene, and G. Queguiner, J.
Organometal. Chem., 1981, 216, 139. See also ref 4d; f) M. Mallet and G. Queguiner, Tetrahedron, 1982, 38, 3035; g) D. L. Comins and D. H. LaMunyon, Tetrahedron Lett., 1988, 29, 773; h) F.
Marsais, G. Le Nard, and G. Queguiner, Synthesis, 1982, 235; i) M. A. J. Miah and V. Snieckus, J.
Org. Chem., 1985, 50, 5436; j) J. A. Turner, J. Org. Chem., 1983, 48, 3401; L. Estel, F. Linard, F.
Marsais, A. Godard, and G. Queguiner, J. Heterocycl. Chem., 1989, 26, 105.

- 5. R. J. Mills, N. J. Taylor, and V. Snieckus, J. Org. Chem., 1989, 54, 4372.
- 6. M. A. J. Miah, Ph. D Thesis, University of Waterloo, 1985; M. Tsukazaki and V. Snieckus, *Heterocycles*, 1992, 33, 532.
- 7. Use of 1.1 equiv. of LDA led to a separable mixture of 4 (88%) and 2 (9%). See also ref 6.
- 8. F. H. Pinkerton and S. F. Thames, J. Organometal. Chem., 1970, 24, 623.
- 9. M. Iwao and T. Kuraishi, Tetrahedron Lett., 1983, 24, 2649.
- Metalation for 45 min followed by benzaldehyde quench gave 5c (51%) together with 2-(N,N-diethylcarbamoyl)-4-TMS-3-hydroxypyridine (20%), the result of an anionic Fries rearrangement. See also ref 6.
- 11. The following procedure (Method A) is representative. To a solution of LiTMP (1.50 mmol, prepared in situ from n-BuLi and tetramethylpiperidine at 0 °C) in THF at -78 °C was added a solution of 4 (0.226 g, 1.00 mmol) in THF (0.5 ml). After 5 min, PhCHO (0.209 ml, 2.00 mmol) was added and the mixture was stirred for 15 min at -78 °C. The solution was then warmed to -20 °C and quenched with sat. NH4Cl solution. Extraction with Et₂O followed by drying (MgSO₄) and column chromatography afforded pure 5c (0.306 g, 82%) as colorless crystals, mp 71-72 °C (Et₂O-hexane).
- 12. S. Sengupta and V. Snieckus, Tetrahedron Lett., 1990, 31, 4267.
- All new compounds show spectroscopic (ir, ¹H and ¹³C nmr, ms) and combustion analysis data fully consistent with their proposed structures.

Received, 24th December, 1992