PYRAZOLOPYRIDINES. 1. FORMYLATION AND ACYLATION OF PYRAZOLO[1,5-a]PYRIDINES

Ken-ichi Tanji*, Takehiko Sasahara, Junko Suzuki, and Takeo Higashino

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422, Japan

<u>Abstract</u> In the treatment of pyrazolo[1,5-a]pyridines with dimethylformamide and phosphorus oxychloride, Vilsmeier-Haack formylation proceeded at the3-position, giving 3-pyrazolo[1,5-a]pyridinecarboxaldehydes. Reaction of the pyrazolo[1,5-a]pyridinewith acyl halide gave 3-acylpyrazolo[1,5-a]pyridines.Conversion of the formyl group into the alkenyl groupwas achieved easily by Wittig reaction.

It is well known that Vilsmeier-Haack formylation¹ and Friedel-Crafts acylation² are useful methods for introduction of carbon chains into π -excess heteroarenes. However, only a few studies³ have been reported on introducing electrophiles into pyrazolo[1,5-a]pyridine (the pyrazolopyridine) ring. We investigated Vilsmeier-Haack formylation and Friedel-Crafts acylation of the pyrazolopyridines (<u>1-3</u>) to introduce formyl and acyl groups. In the present paper, we describe the results obtained from the above reactions. First, the pyrazolopyridines (<u>1-3</u>) were subjected to the reaction with di-Dedicated to Prof. Edward C. Taylor on the occasion of his 70th birthday.

Scheme 1

methylformamide (DMF) and phosphorus oxychloride (POCl₃) by means of Vilsmeier-Haack formylation. When a mixture of <u>1</u>, DMF, and POCl₃ was stirred at room temperature for 1 h, 3-pyrazolo[1,5-<u>a</u>]pyridinecarboxaldehyde (<u>4</u>) was obtained in 93 % yield, selectively. When the same reaction was carried out at 150°C, the yield of <u>4</u> was decreased by polymerization and so this reaction prefers the rather low reaction temperature. Moreover, no significant effects of the substituent at the 2-position on Vilsmeier-Haack reaction were observed. Namely, under the same conditions, 2-methylpyrazolo[1,5-<u>a</u>]pyridine (<u>2</u>) having an electron-donating substituent and ethyl 2-pyrazolo[1,5-<u>a</u>]pyridinecarboxylate (<u>3</u>) having an electron-withdrawing substituent afforded 2-methyl-3-pyrazolo[1,5-<u>a</u>]pyridinecarboxaldehyde (<u>5</u>) and ethyl 3-formyl-2-pyrazolo[1,5-<u>a</u>]pyridinecarboxylate (<u>6</u>), respectively, in considerable yields.

Awano already reported⁴ that the aroylation of the pyrazolopyridines with

aroyl chlorides to synthesize the compounds possessing inhibitory activity on Platelet aggregation and declared the aroylation proceeds at the 3-position of the pyrazolopyridine ring. But, the reaction of the pyrazolopyridine (<u>1</u>) not having substituent with benzoyl chloride and aliphatic acyl chloride has not been reported. Next, we examined the reaction of pyrazolo[1,5-<u>a</u>]pyridine (<u>1</u>) with benzoyl chloride and aliphatic acyl chlorides such as acetyl, propionyl, and cyclohexanecarbonyl chlorides, to introduce acyl groups.

	+	R	coci	.		>			COR
	R		reac	t.	time	asts la	Y	ield(8)
			cempere			Catary	st		
a	Ph		50	°C	24	-		0	80
a	Ph		100	°C	24	-		20	30
a	Ph		100	°C	24	BF Et	.0	21	35
а	Ph		150	°c	2		2	50	0
b	cyclohe	exvl	150	۰Č	3	_		30 47	õ
C	Et	1	refl	uх	24	-		*/ 50	ň
đ	Me		refl	ux	24	_		17	45
	+ Me	R	COCI			>	N. 8	— `N	COR Me
					react	. tin	ne vi	eld()	.)
			R	tem	perati	ure (ł	i) <u></u>	8	1
		a	Ph		150 %	-	2 0	E	
		b cv	clohexv	i ·	150 %	7	3 4	1	0
		c Î	Et	-	reflux	- - 7	0 5	<u>,</u>	0
		đ	Me	1	reflux	· 2	4 4	יד ר 7	3
	CO₂Et	+	PhCOCI			->	reco	very	<u></u>

Scheme 2

The reaction of <u>1</u> with benzoyl chloride at 50-100 °C resulted in the recovery of the starting pyrazolopyridine (<u>1</u>), but the reaction at 150 °C

917

afforded 3-benzoylpyrazolo[1,5-<u>a</u>]pyridine (<u>7a</u>) in 50 % yield without the recovery of <u>1</u>. These results show that this reaction seems to require a rather high reaction temperature. Boron trifluoride etherate as one of Lewis acid is an effective catalyst² on Friedel-Crafts reaction, but in this case the acylation was not catalyzed by the addition of boron trifluoride etherate as shown in scheme 2. Similarly, compound (<u>1</u>) reacted with cyclohexanecarbonyl, propionyl and acetyl chlorides to give the corresponding 3-acylpyrazolopyridines (<u>7b-d</u>) at 150 °C or refluxing conditions. Moreover, the 2-methylpyrazolopyridine (<u>2</u>) having an electron-donating substituent at the 2-position reacted with acyl chloride to give the 3acyl-2-methylpyrazolopyridine (<u>8a-d</u>), but in the case of ethyl 2-pyrazolopyridinecarboxylate (<u>3</u>) having an electron-withdrawing substituent at the 2-position, acylation failed to give the expected product.

Finally, in order to convert a formyl group into an alkenyl group, 3-formylpyrazolo[1,5-<u>a</u>]pyridine (<u>4</u>) was subjected to the reaction with Wittig reagents. When <u>4</u> was heated with (triphenylphosphonio)ethoxycarbonylmethanide in benzene under reflux, ethyl 3-pyrazolo[1,5-<u>a</u>]pyridineacrylate (<u>9a</u>) was obtained in 72 % yield. Similarly, in the treatment of <u>4</u> with benzyltriphenylphosphonium bromide in the presence of sodium hydride in tetrahydrofuran, Wittig reaction proceeded to give 3-styrylpyrazolo[1,5-<u>a</u>]pyridine (<u>9b</u>). In the ¹H-nmr spectrum of <u>9a</u>, the signal due to one of the olefinic protons on the side chain appears at 7.78 (1H, d) with a coupling constant of 16 Hz, indicating that the stereochemistry of the double bond of <u>9a</u> is trans. The alkenylpyrazolopyridine (<u>9b</u>) was a mixture of the trans- and cis-isomers, but the relative ratio of the trans-cis isomers could not be calculated owing to the overlapping of the two olefinic protons with aromatic protons.

In summary this study revealed that the Vilsmeier-Haack formylation and Friedel-Crafts acylation with aliphatic acyl chloride proceed at 3-position of the pyrazolopyridine ring selectively and the formyl group at the 3-position can be converted easily to the alkenyl group.

EXPERIMENTAL

All melting points are uncorrected. Ir spectra were measured with a Jasco A-102 diffraction grating ir spectrophotometer. ¹H-Nmr spectra were taken at 60 MHz and 23 °C with a JEOL JNM-PMX60SI ¹H-nmr spectrometer. Chemical shifts are expressed in ppm downfield from tetramethylsilane as an internal standard.

General Procedure for the Vilsmeier-Haack Reaction of the Pyrazolopyridine (1-3)

To a solution of phosphorus oxychloride $(POCl_3)$ (0.8 g, 5.2 mmol) in dimethylformamide (DMF) (2 ml), a pyrazolopyridine $(\underline{1}-\underline{3})^{5-7}$ (1.7 mmol) was added. The mixture was stirred at room temperature for 1 h. The solvent was removed under reduced pressure. The residue was diluted with H₂O, made alkaline with 2N NaOH, and extracted with CHCl₃. After drying over sodium sulfate, the solvent was removed under reduced pressure. The crude product was purified by SiO₂ column chromatography with benzene to give the 3pyrazolo[1,5-<u>a</u>]pyridinecarboxaldehydes (<u>4</u>-<u>6</u>) as colorless needles. <u>General Procedure for Reaction of the Pyrazolopyridine (1 and 2) with Acy1</u> Chlorides

A mixture of a pyrazolopyridine (1 and 2) (1.7 mmol) and an acyl chloride (2 ml) was heated at 150, °C for 3 h or refluxed for 24 h. The mixture was

Compd.	Irv _{max} (cm ⁻¹)	mp(°C)	Formula	Analysis(%) Calcd(Found)			
	(C=O)			С	Н	N	
<u>4</u>	1659	89-91	^C 8 ^H 6 ^N 2 ^O	65.74	4.14	19.17	
<u>5</u>	1661	74-76	с ₉ н ₈ n ₂ о	(65.47) 67.48 (67.10)	(4.12) 5.03 (4.82)	(19.10) 17.49 (17.41)	
<u>6</u>	1740 1660	132-134	C ₁₁ H ₁₀ N ₂ O ₃	60.55 (60.52)	4.52	12.84 (12.88)	

Table I. Ir Spectral Data, Melting Points and Elemental Analysis for 4-6

Table II. ¹H-Nmr Spectral Data for 4-6

Compd.	¹ H-Nmr (CDCl ₃)ppm
4	6.98(1H,dd,J _{5,6} =6 Hz,J _{6,7} =7 Hz,C ⁶ -H),7.43(1H,dd,J _{5,6} =6 Hz,
	$J_{4,5}=9$ Hz, $C^{5}-H$), 8.20(1H, d, $J_{4,5}=9$ Hz, $C^{4}-H$), 8.30(1H, s, $C^{2}-H$),
	8.50(1H,d,J _{6,7} =7 Hz,C ⁷ -H),9.97(1H,s,CHO)
<u>5</u>	2.65(3H,s,CH ₃),6.87(1H,dd,J _{5,6} =7 Hz,J _{6,7} =8 Hz,C ⁶ -H),7.35
	$(1H, dd, J_{5,6} = 7 Hz, J_{4,5} = 9 Hz, C^{5} - H), 8.08(1H, d, J_{4,5} = 9 Hz, C^{4} - H),$
	8.32(1H,d,J _{6,7} =8 Hz,C ⁷ -H),9.92(1H,s,CHO)
<u>6</u>	1.48(3H,t,J=7 Hz,CH ₂ CH ₃),4.54(2H,q,J=7 Hz,CH ₂ CH ₃),7.10(1H,
	dd,J _{5,6} =6 Hz,J _{6,7} =7 Hz,C ⁶ -H),7.53(1H,dd,J _{5,6} =6 Hz,J _{4,5} =8
	Hz,C ⁵ -H),8.08(1H,d,J _{4,5} =8 Hz,C ⁴ -H),8.57(1H,d,J _{6,7} =7 Hz,
	С ⁷ -Н),10.58(1H,s,CHO)

poured into 2N NaOH, stirred for 1 h, and extracted with $CHCl_3$. After drying over sodium sulfate, the solvent was removed under reduced pressure. The crude product was purified by SiO_2 column chromatography with benzene or petroleum benzin-benzene (1:1) and recrystallized from petroleum benzin to give 3-acylpyrazolo[1,5-<u>a</u>]pyridine (<u>7a-d</u> and <u>8a-d</u>).

<u>Reaction of 1 with Benzoyl Chloride in the presence of Boron Trifluoride</u> <u>Etherate (BF, Et₂O)</u>

A mixture of benzoyl chloride (2 ml) and boron trifluoride etherate (0.24 g, 1.7 mmol) was stirred at room temperature for 10 min and then <u>1</u> (0.2 g, 1.7 mmol) was added to the mixture. The mixture was heated at 150 °C for

Compd.	Irv ^{KBr} (cm ⁻¹)	mp(°C)	Formula	Analysis(%) Calcd(Found)			
	(C=O)			C	H	N	
<u>7a</u>	1635	98-100	^C 14 ^H 10 ^N 2 ^O	75.65	4.54	12.61	
<u>7b</u>	1644	99-101	$C_{14}H_{16}N_{2}O$	73.66	7.06	12.27	
<u>7c</u>	1646	128-129	^C 10 ^H 10 ^N 2 ^O	68.95	5.79	16.08 (15.95)	
<u>7d</u>	1645	99-100	с ₉ н ₈ n ₂ о	67.48 (67.30)	5.03 (5.04)	17.49 (17.23)	
<u>8a</u>	1614	59-60	^C 15 ^H 12 ^N 2 ^O	76.25 (76.19)	5.12 (5.16)	11.86 (11.61)	
<u>8b</u>	1628	60-61	C ₁₅ H ₁₈ N ₂ O	74.35 (74.43)	7.49 (7.40)	11.56 (11.63)	
<u>8c</u>	1644	82-83	^C 11 ^H 12 ^N 2 ^O	70.18 (70.13)	6.43 (6.47)	14.88 (14.75)	
<u>8d</u>	1637	87-88 ^a					

Table III. Ir Spectral Data, Melting Points and Elemental Analysis for 7a-d and 8a-d

a) Lit.,⁸ mp 90 °C.

24 h. The mixture was poured into 2N NaOH, stirred for 1 h, and extracted with CHCl₃. After drying over sodium sulfate, the solvent was removed under reduced pressure. The crude product was purified by SiO₂ column chromatography. The fraction eluted with petroleum benzin-benzene (1:1) gave <u>1</u>. Recovery 70 mg (35 %). The fraction eluted with benzene gave 3-benzoylpyrazolo[1,5-a]pyridine (7a). Yield 80 mg (21 %).

Reaction of 4 with (Triphenylphosphonio)ethoxycarbonylmethanide

A solution of <u>4</u> (0.3 g, 2.1 mmol) and (triphenylphosphonio)ethoxycarbonylmethanide (1.2 g, 2.8 mmol) in benzene (10 ml) was refluxed for 3 h. The solvent was removed under reduced pressure. The residue was diluted with H_2O and extracted with $CHCl_3$. After drying over sodium sulfate, the solvent was removed under reduced pressure. The crude product was purified by SiO_2 column chromatography with benzene and recrystallized from petroleum benzin to give ethyl 3-pyrazolo[1,5-<u>a</u>]pyridineacrylate (<u>9a</u>) as colorless needles, mp 65-66 °C. Yield 0.32 g (72 %). Anal. Calcd for $C_{12}H_{12}N_2O_2$: C, 66.65; H, 5.59; N, 12.95. Found: C, 66.52; H, 5.62; N, 12.69. Irv_{max}^{KBr} cm⁻¹: 1712 (C=O). ¹H-Nmr (CDCl₃) δ : 1.32 (3H, t, J=7 Hz, OCH₂CH₃), 4.22 (2H, q, J=7 Hz, $OC\underline{H}_2CH_3$), 6.22 (1H, d, J=16 Hz, $CH=C\underline{H}CO_2Et$), 6.79 (1H, dd, $J_{5,6}=6$ Hz, $J_{6,7}=7$ Hz, C^6 -H), 7.22 (1H, dd, $J_{4,5}=9$ Hz, $J_{5,6}=6$ Hz, C^5 -H), 7.69 (1H, d, $J_{4,5}9$ Hz, C^4 -H), 7.78 (1H, d, J=16 Hz, $C\underline{H}=CHCO_2Et$), 8.40 (1H, d, $J_{6,7}=7$ Hz, C^7 -H).

Table IV. 'I	H-Nmr	Spectral	Data	for	<u>7a-d</u>	and	<u>8a-d</u>
--------------	-------	----------	------	-----	-------------	-----	-------------

Compd.	¹ H-Nmr (CDCl ₃)ppm
<u>7a</u>	$6.87(1H, dd, J=6 Hz, J=8 Hz, C^{6}-H), 7.15-7.80(6H, m, C^{5}-H and COPh),$
	$8.12(1H,s,C^2-H), 8.22-8.47(2H,m,C^4-H and C^7-H)$
<u>7b</u>	1.05-2.20(10H,m,cyclohexyl),2.80-3.28(1H,br,cyclohexyl),6.85
	(1H,dd,J _{5,6} =6 Hz,J _{6,7} =7 Hz,C ⁶ -H),7.33(1H,dd,J _{5,6} =6 Hz,J _{4,5} =9
	$Hz, C^{5}-H$, 8.15-8.47(3H, m, $C^{4}-H, C^{2}-H$ and $C^{7}-H$)
<u>7c</u>	1.23(3H,t,J≠7 Hz,CH ₂ CH ₃),2.88(2H,q,J=7 Hz,CH ₂ CH ₃),6.85(1H,dd,
	$J_{5,6}=6 \text{ Hz}, J_{6,7}=7 \text{ Hz}, C^{6}-H$), 7.35(1H, dd $J_{5,6}=6 \text{ Hz}, J_{4,5}=9 \text{ Hz}, C^{5}-H$)
	8.17-8.48(3H,m, C^4 -H, C^2 -H and C^7 -H)
<u>7đ</u>	2.50(3H,s, CH_3),6.92(1H,dd, $J_{5,6}=7$ Hz, $J_{6,7}=8$ Hz, C^6 -H),7.37(1H,
	$dd, J_{5,6} = 7 Hz, J_{4,5} = 10 Hz, C^{5} - H), 8.28 - 8.55(3H, m, C^{4} - H, C^{2} - H and C^{7} - H)$
<u>8a</u>	2.42(3H,s,CH ₃),6.77(1H,dd,J=6 Hz,J=8 Hz,C ⁶ -H),7.02-7.68(7H,m,
	$C^{5}-H, C^{4}-H$ and COPh),8.35(1H,d,J=7 Hz, $C^{7}-H$)
<u>8b</u>	0.75-2.17(10H,m,cyclohexyl),2.68(3H,s,CH ₃),2.70-3.20(1H,br,
	cyclohexyl),6.75(1H,dd,J _{5,6} =6 Hz,J _{6,7} =7 Hz,C ⁶ -H),7.25(1H,dd,
	J _{5,6} =6 Hz,J _{4,5} =9 Hz,C ⁵ -H),8.02(1H,d,J=9 Hz,C ⁴ -H),8.27(1H,d,J=
	7 Hz,C ⁷ -H)
<u>8c</u>	$1.23(3H,t,J=7 Hz,CH_2CH_3), 2.65(3H,s,CH_3), 2.83(2H,q,J=7 Hz,CH_2CH_3)$
	6.77(1H,dd,J _{5,6} =6 Hz,J _{6,7} =7 Hz,C ⁶ -H),7.27(1H,dd,J _{5,6} =6 Hz,J _{4,5} =
	9 Hz,C ⁵ -H),8.07(1H,d,J=9 Hz,C ⁴ -H),8.25(1H,d,J=7 Hz,C ⁷ -H)
<u>8d</u>	2.53(3H,s,CH ₃),2.67(3H,s,CH ₃),6.80(1H,dd,J _{5,6} =6Hz,J _{6,7} =7 Hz,
	$C^{6}-H$,7.30(1H,dd, $J_{5,6}=6$ Hz, $J_{4,5}=9$ Hz, $C^{5}-H$),8.15(1H,d,J=9 Hz, $C^{4}-$
	H),8.32(1H,d,J=7 Hz,C ⁷ -H)

Reaction of 6 with Benzyltriphenylphosphonium Bromide

A mixture of benzyltriphenylphosphonium bromide (2.15 g, 4.9 mmol) and NaH (0.2 g, 60 % in oil, 4.9 mmol) in THF (10 ml) was stirred at room temperature for 30 min. To the mixture $\underline{4}(0.24 \text{ g}, 1.6 \text{ mmol})$ was added and the mixture was refluxed for 3 h. the same work-up of the reaction mixture as described for the reaction of $\underline{4}$ with (triphenylphosphonio)ethoxycarbonylmethanide gave 3-styrylpyrazolo[1,5- \underline{a}]pyridine ($\underline{9b}$) as pale yellow needles, mp 135-137 °C. Yield 0.27 g (73 %). Anal. Calcd for C₁₅H₁₂N₂: C, 81.79; H, 5.49; N, 12.72. Found: C, 81.68; H, 5.49; N, 12.74. ¹H-Nmr (CDCl₃)&: 6.69 (1H, dd, J_{5,6}=5 Hz, J_{6,7}=7 Hz, C⁶-H), 6.94-7.52 (8H, m, C⁵-H and CH=CHPh), 7.68 (1H, d, J_{4,5}=8 Hz, C⁴-H), 8.09 (1H, s, C²-H), 8.38 (1H, d, J_{6,7}=7 Hz, C⁷-H).

REFERENCES

- C. F. Candy and R. A. Jones, <u>J. Chem. Soc. (B)</u>, 1971, 1585; P. E.
 Sonnett, <u>J. Org. Chem.</u>, 1971, <u>36</u>, 1005; M. J. E. Hankins, A. E.
 Kackson, A. M. Oliveria-Campos, and P. V. R. Shannon, <u>Chem. Ind.</u> (London), 1981, 338; G. Marino, <u>Adv. Heterocycle. Chem.</u>, 1971, <u>13</u>,235.
- W. Borsche and H. Groth, <u>Ann. Chem.</u>, 1941, <u>549</u>, 238; G. Hart, D. R. Liljegren, and K. T. Potts, <u>J. Chem. Soc.</u>, 1961, 4267; W. A. Remers, <u>Chem. Heterocycl. Compd. (Engl. Trans.)</u>, 1979, <u>25</u>, 357; R. X. Xu, H. J. Anderson, N. J. Gogan, C. E. Loader, and R. McDonald, <u>Tetrahedron Lett.</u>, 1981, <u>22</u>, 4899.
- B. M. Lynch and B. P. Lem, <u>J. Heterocycl. Chem.</u>, 1974, <u>11</u>, 223; K. Awano and S. Suzue, <u>Chem. Pharm. Bull.</u>, 1992, <u>40</u>, 631; K. Awano, K. Iwase, Y. Nagatsu, and S. Suzue, <u>Chem. Pharm. Bull.</u>, 1992, <u>40</u>,639;
 C. R. Hardy, <u>Adv. Heterocycl. Chem.</u>, 1984, <u>36</u>, 343.
- 4. K. Awano, S. Suzue, and M. Segawa, <u>Chem. Pharm. Bull.</u>, 1986, <u>34</u>, 2828;
 K. Awano and S Suzue, <u>Chem. Pharm. Bull.</u>, 1986, <u>34</u>, 2833.
- 5. V. Boekelheide and N. A. Fedoruk, <u>J. Org. Chem.</u>, 1968, <u>33</u>, 2062.
- 6. Y. Tamura, A. Yamakami, and M. Ikeda, <u>Yakugaku Zasshi</u>, 1971, <u>91</u>, 1154.

- 7. P. L. Anderson, J. P. Hasak, and A. D. Kahle, <u>J.Heterocycl. Chem.</u>, 1981, <u>18</u>, 1149.
- K. T. Potts, U. P. Singh, and J. Bhattacharyya, <u>J. Org. Chem.</u>, 1968, <u>33</u>, 3766.

Received, 30th November, 1992