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u- 5,6,7,9-Tetrahydroimidazo[1,2-a][1,4]diazepines (4s-c) are prepared by 

conversion of 2-acylimidazoles (2a-c) to cyclic imines (3a-c) followed by hydride 

reduction. In the key step, a masked primary amine (1) is acylated in good yield 

employing an alkyllithium base to afford acylimidazoles (2a-c) after acid hydrolysis 

of the imines. This reaction avoids use of transient N-l (im) protecting groups. 

Regiospecific transmetallation and subsequent substitution of imidazole at the 2-position has previously been 

accomplished without perturbation of its sp3 N-1 nitrogen by the use of temporary blocking groups such as 

MOM,' S E M , ~ . ~  and trityL4 Herein, we report the first such transformation in which this criticalN-l position 

bears a permanent functional group amenable to subsequent manipulation, i.e. the 3-aminopropyl moiety. Further 

elaboration of these resultant 1,2-disuhstituted imidazoles provides novel 5,6,7,9-tetrahydroimidazo[l,2-a]- 

[1,4]diazepines (4a-c). The regiospecific lithiation of these functionalized substrates, usually effected with n- 

hutyllithinm, represents an attractive, versatile approach to imidazole-based heterocyclic systems. 

Masked primary amine (1) is prepared from 1-(3-aminopropy1)imidazole by the method of O'Donnell er a1.5 in 

high yield (Scheme 1). Lithiation of 1 (n-BuLi, THF, -78°C) and acylation (ArCOCI, -78'C) givesexclusively a 

2-aroylimidazole product (7 1-90%).6 Use of Boc or Chz instead of diphenylmethylidene protection results in a 

tDedicated to the celebration of the 70" birthday of Professor E. C. Taylor 
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heterogenous reaction medium which yields a mixture of mono- and diacyl products. Although TMEDA is 

employed to maintain solubility of all these metallated intermediates, yields and solubility in the 

diphenylmethylidene cases are unaffected by the absence of TMEDA.7 Methyllithium or n-butyllithium may he 

used interchangeably without affecting yield. 

Removal of the diphenylmethylidene group (aqueous HCI, THF) gives the 2-aroylimidazole derivatives (2a-c) as 

dihydrochloride salts.8 Dehydrative cyclization of 2a-c under basic, protic conditions (2 eq. Et3N, MeOH) 

occurs readily with either electron-donating or -withdrawing substituted aromatic derivatives to produce novel, 

stable imines (3a-c)~ (60-73%). Lithium aluminum hydride reduction of 3a-c (1 eq. LiAlH4, THF, room 

temperature) cleanly affords the title compounds (4a-c)Io (86-93%), 

Scheme 1 

N&N"J'N=( 
Ph 1) n-BuLilArCOCI 

* N 
U ~h 2) aq. HCI 

Et,N - ArkN] - LiAH,, ArlNl> a b A k P h  Ar=4-FPh 
MeOH N /  N , , THF N' N , , c Ar=4-MeOPh 

In preliminary investigations into the reactivity of 4c (Scheme 2),  derivatization at the 8-N position is effected 

with hoth alkylating (for 5: MeI, NaH, DMF, 5'C. 63% or HCOzH, NaBHq, room temperature, 88%)11 and 

acylating (for 6: CH3COC1, CH2C12, room temperature, 95%)12 agents. Reductive alkylation of k 1 3  produces 5 

cleanly without formation of quaternary by-products, and is the superior method to alkylate these systems. 

Interestingly, the 'H nmr spectra of hoth 5 and 6exhibit a large chemical shift difference (0.3-0.7 ppm) between 

the seven-ring pseudoaxial and pseudoequatorial protons of each methylene site. These 1H nmr shift differences 

are characteristic of medium-sized rings.14 
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Scheme 2 

In conclusion, these resulcs expand lithiation/substitution methodology of imidazole chemistry. Furthermore, the 

application of this methodology produces the novel 5,6,7,9-tetrahydroimidazo[1.2-aI[1,4]diazepines as new 

examples of sevenmembered ring-fused imidazoles. 
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