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Abstract - Treatment of decaione (11) with acetone or dimethoxymethane and an 

appropriate acid gave tetrahydropyrans (10) (74%) and (13) (59%). respectively. Similar 

treatment of indoie (6) with dimethoxymethane gave indoline (14) (59%). Attempts to 

eflect similar reactions with indole (4) were unsuccessful. 

During the course of studies directed toward syntheses of geisemine (1) and 21-oxogelsemine (2), we examined an 

approach to the oxindole substructure outlined in Scheme 1 We hoped to convett ketone (3) into indole (4) and then 

use the hydroxymethyl group to direct electrophilic reactions to afford indolines (5) that might serve as oxindoie 

precursors. This communication describes model studies related to this goal. 

Scheme 1 
H 

lndoie (6) was selected as a readily accessible model for 4, and was prepared as outlined in Scheme 2. Ketalization of the 

known decalone (7) gave (8) (89%) which was subsequently reduced to aflord 9 ( 8 8 ~ ) . ~  Attempted ketal exchange gave 

tetrahydropyran (10) in 83% yield, but hydrolysis of 9 using hydrochloric acid in aqueous methanol did afford the desired 

ketoi (11) in 81% yield.4 Treatment of 11 with phenylhydrazine in acetic acid, followed by warming with boron trifiuoride 

etherate, gave the target indole (6) in 76% yield.4 A more efficient route from 710 6 was also developed. ihus, application 

of Fischer indole synthesis conditions to 7 gave 12 (80%) and lithium aluminum hydride reduction of the ester afforded 

indole (6) in 91% yield.4 
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The unexpected, anhough not surplising, conversion of 9 to 10 was encouraging, but before attempting readons with 6, 

alkoxymethylations of ketol (11) were examined. Thus, treatment of 11 with acetone and Dowex-50 (H+) gave 

tetrahydropyran (10) in 74% yield. Conversion of 11 to 13 was also accomplished in 59% yield using excess 

dimethoxymethane and ethylaluminum dichloride in dich~oromethane.~~~ 

Scheme 2 

(a) HOCHzCHzOH. DowexdO (Hi) (b) WH4, THF (c) Dowex-50 (H?, acetone (d) HCI, H20,MeOH (e) PhNHNH2, 
ACOH. BF3.Et20.80~~ (f) (Me0)2CH2, CH2CI2. E1AIC12. -78 '~  +room temperature 

We next examined methoxylation of 6 using wnditlons that had been successful with 11 and ultimately found that indoiine 

(14) wuld be obtained in 59% yield (Scheme 3).4 This result encouraged us to prepare indole (4), as shown in Scheme 4. 

to see if this result wutd be extended to a compound relevant to gelsemine. 

Treatment of the known ketone (3) with phenyihydrazine and boron trifluoride etherate in acetic acid gave indole (15) in 

73% y i e ~ d . ~ . ~  A series of dewupling experiments established the relationship behveen the C(4) methine proton and C(5) 

methylene protons, confirming that the expected regiochemical course had been followed in the Fischer indole 

synthesis.6 Demethyiation of 15 using boron tribromide in dichloromethane at -7E°C proceeded smoothly to aflord 4.4 

Unfortunately, anempts to conveR4 to indoline (16) using a variety of conditions met with failure, as did attempts to direct 

other electrophiles to C(I ~ b ) . ~  ~ h u s ,  this approach to the oxindole portion of gelsemine was abandoned in favor of more 

promising  result^.^ 
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Scheme 3 

(MeO)&H2, CH&12. EtAIClz 

-78'C + mom temperature 

In conclusion, model studies directed toward alkaloids (1) and (2) have provided efficient access to complex 

tetrahydropyrans derived from decalone (11) and indole (6). Unfortunately, attempts to extend these resuns to indole (4) 

have not succeeded. 

Scheme 4 
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