1,3-DIPOLAR CYCLOADDITION REACTIONS OF *N*-ARYL-2,4,6-CYCLO-HEPTATRIEN-1-IMINES WITH *p*-SUBSTITUTED BENZONITRILE OXIDES: FORMATIONS OF 1,2,4-OXADIAZASPIRO[4.6]UNDECA-6,8,10-TRIENES

Kazuaki Ito, Katsuhiro Saito,^{*} and Kensuke Takahashi

Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

Abstract ———— Reactions of N-aryl-2,4,6-cycloheptatrien-1-imines with p-substitutied benzonitrile oxides afforded 1,2,4-oxadiazaspiro[4.6]undeca-6,8,10-trienes via [2+4] type cycloadditions. The study of substituent effects on the reaction rates suggested the nucleophilic attacks of the imines to the nitrile oxides.

Nitrile oxides are known to be active 1,3-dipoles in 1,3-dipolar cycloaddition reactions and have been extensively investigated from viewpoints of their utility for synthesis of five membered heterocyclic compounds and of the elucidation of the reaction mechanism in 1,3-dipolar cycloaddition reactions.¹ However we were unaware of any reactions of nitrile oxides with troponoid compounds, except for the reaction with 2,4,6-cycloheptatrien-1-one.^{1a}

2,4,6-Cycloheptatrien-1-imines possess large dipole momenta due to contributions of 6π -aromatic structures.² Despite their aromaticities, 2,4,6-cycloheptatrien-1-imines are fairly active in cycloaddition reactions and are known to react only as 8π -components.⁴ Previously, Gandolfi *et al.* reported an exceptional case; the reactions of 2,4,6-cycloheptatrien-1-imines with diphenyl nitrile imine afforded [8+4] type adducts *via* [2+4] type cyclo-addition reactions, where the imine acted as 2π -components. But they did not succeed in the isolation of the [2+4] type cycloadducts.^{3,4}

We report here the first example of the isolation of the [2+4] type cycloadducts in the reactions of N-aryl-2,4,6-cycloheptatrien-1-imines with p-substituted benzonitrile oxides.

A mixture of N-aryl-2,4,6-cycloheptatrien-1-imine (1) and two equimolar amounts of p-substituted benzonitrile oxide (2) was stirred at room temperature for 30 min to give [2+4] type adducts, 1,2,4-oxadiazaspiro[4.6]undeca-6,8,10-trienes, in 77-98 % yields.^{5,6} The results of the reactions were summarized in Table 1.

Talbe 1. Results of The Reactions of N-Ary1-2,4,6-cycloheptatrien-1-imines (1) with p-Substituted Benzonitrile Oxides (2)

cycloheptatriene -1-imines (1)	nitrile oxides (2)	adducts (3)	yields/%
1a	2a	3a.	90
1b	2a	3Ъ	86
1c	2a	3e	92
1d	2a	3d	98
1b	2Ъ	3e	77
1b	2c	3f	89
1b	2d	3g	95

The structural elucidation of 3 was accomplished on the basis of the spectral data. ¹H and ¹³C Nmr spectra s 3 wed the existences of 7,7-disubstituted 2,4,6-cycloheptatriene and two aryl moieties. The chemical shifts of the signals of C_5 (ca. 100 ppm) on oxadiazoline skeltons of 3 well resembled to those of the anologous compound.⁷ NOE experiments clarified the neighboring configuration of two aryl groups, supporting the structures of 3. The relative rate ratios (k_X/k_H) of the reactions of 1b with p-substituted benzo-

nitrile oxides (2a-d) were measured in a similar way to our previous method.⁸ The ratio of 1.00 : 0.46 : 0.54 : 1.35 for 2a : 2b : 2c : 2d was obtained. There is a good linear relation between their logarisms (log k_X/k_H) and Hammett's sigma values (σ p). The positive ρ -value (+0.99) suggests the nucleophilic attack of 1 to 2.

REFERENCES

- a) C. De Michele, R. Gandolfi, and D. Gruenager, *Tetrahedron*, 1974, 30, 3765. b) K. Bast, M. Christl, R. Huisgen, and W. Mack, *Chem. Ber.*, 1973, 106, 3312; K. N. Houk, J. Sims, R. E. Duke, Jr., R. W. Strozier, and J. K. George, *J. Am. Chem. Soc.*, 1973, 95, 7287; K. N. Houk, J. Sims, C. R. Watts, and L. J. Luskus, *ibid.*, 1973, 95, 7301; R. Huisgen, *J. Org. Chem.*, 1976, 41, 403; R. A. Firestone, *Tetrahedron*, 1977, 33, 3009; D. P. Curran, "Advances in Cycloaddition", Vol. 1, JAI Press Inc., London, 1988.
- Y. Kitahara, T. Asao, and M. Oda, "New Aromatic Chemistry", Kagaku Sosetsu, No 15, Gakujutsu Center, Tokyo, 1977.
- a) G. Gandolfi and L. Toma, *Tetrahedron*, 1980, 36, 935. b) K. Ito, K. Saito, and K. Takahashi, *Heterocycles*, 1991, 32, 1117; *idem*, *Bull. Chem. Soc. Jpn.*, 1992, 65, 812; K. Ito, K. Saito, S. Takeuchi, and K. Takahashi, *Heterocycles*, 1992, 34, 1415.
- 4. Gandolfi et al. reported that the [2+4] type adducts could be isolated in the reactions of tricarbonyl(N-aryl-2,4,6-cycloheptatriene-1-imines)iron complex with diphenyl nitrile imine.^{4a}
- 5. Physical data of 3a-g are as follows. 3a: mp 118-119°C (from toluene). Hrms: m/z 330.1343. Calcd for C₂₁H₁₈N₂O₂: m/z 330.1367. Ms m/z (rel intensity): 330 (M⁺, 19), 149 (100). ¹H Nmr (CDCl₃) δ 3.71 (s, 3H, Me), 6.04 (m, 2H, H_a), 6.42 (m, 4H, H_b and H_c), 6.65-6.95 (m, 4H, aryl protons), 7.20-7.60 (m, 5H, phenyl protons). ¹³C Nmr (CDCl₃) δ 55.3 (OMe), 99.6 (C_5), 114.0 (C_{18}), 125.8 (C_{12}), 127.3 (C_6 , C_{11} , and C_{17}), 128.2 (C_7 and C_{10}), 128.4 (C_{13} or C_{14}), 129.0 (C_{14} or C_{13}), 129.7 (C_8 and C_9), 130.1 (C_{15}), 130.9 (C₁₆), 153.9 (C₃), 157.8 (C₁₉). 3b: mp 92-94°C (from benzene). Hrms: m/z 314.1410. Calcd for C₂₁H₁₈N₂O: m/z 314.1417. Ms m/z (rel intensity): 314 (M⁺, 19), 149 (100). ¹H Nmr (CDCl₃) δ 2.26 (s, 3H, Me), 6.04 (m, 2H, H_a), 6.42 (m, 4H, H_b and H_c), 6.70-7.05 (m, 4H, aryl protons), 7.15-7.65 (m, 5H, phenyl protons). ¹³C Nmr (CDCl₃) δ 20.9 (Me), 99.6 (C_5) , 125.8 (C_{12}) , 126.9 $(C_6 \text{ and } C_{11})$, 127.4 (C_{17}) , 127.5 $(C_7 \text{ and } C_{10})$, 128.3 $(C_{13} \text{ or } C_{13})$ C14), 128.4 (C14 or C13), 129.1 (C19), 129.4 (C18), 129.8 (C8 and C9), 130.1 (C15), 135.6 (C16), 153.7 (C3). 3c: mp 91-92°C (from benzene). Hrms: m/z 334.0893. Calcd for C₂₀H₁₅N₂OCl: m/z 334.0872. Ms m/z (rel intensity): 336 (M⁺, 5), 153 (100). ¹H Nmr $(CDCl_3) \delta = 6.02 \text{ (m, 2H, H}_{B}), 6.45 \text{ (m, 4H, H}_{b} \text{ and H}_{c}), 6.74-7.22 \text{ (m, 4H, aryl protons)},$ 7.25-7.70 (m, 5H, phenyl protons). ¹³C Nmr (CDCl₃) δ 100.2 (C₅), 125.4 (C₁₂), 127.1 (C₆)

and C₁₁), 127.7 (C₇ and C₁₀), 128.0 (C₁₇), 128.1 (C₁₃ or C₁₄), 128.6 (C₁₄ or C₁₃), 128.8 (C_{18}) , 129.9 $(C_8 \text{ and } C_9)$, 130.5 (C_{15}) , 131.3 (C_{19}) , 136.9 (C_{16}) , 153.3 (C_3) . 3d: mp 120-121°C (from toluene). Hrms: m/z 378.0354. Calcd for $\rm C_{20}H_{15}N_{2}OBr:$ m/z 378.0367. Ms m/z (rel intensity): 380 (M⁺, 13), 378 (M⁺, 14), 103 (100). ¹H Nmr (CDCl₃) & 6.06 (d, 2H, H_a), 6.50 (m, 4H, H_b and H_c), 6.68-7.70 (m, 9H, aromatic protons). ¹³C Nmr (CDCl₃) δ 100.2 (C₅), 119.1 (C₁₉), 125.4 (C₁₂), 127.1 (C₆ and C₁₁), 127.7 (C₇ and C₁₀), 128.2 (C₁₃) or C₁₄), 128.2 (C₁₇), 128.6 (C₁₄ or C₁₃), 129.9 (C₈ and C₉), 130.5 (C₁₅), 131.8 (C₁₈), 137.4 (C₁₆), 153.2 (C₃). 3e: mp 131-132°C (from benzene). Hrms: m/z 344.1522. Calcd for $C_{22}H_{20}N_2O_2$: m/z 344.1522. Ms m/z (rel intensity): 344 (M⁺, 12), 328 (100). ¹H Nmr $(CDCl_3)$ δ 2.20 (s, 3H, Me), 3.70 (s, 3H, OMe), 5.92 (m, 2H, H_a), 6.30 (m, 4H, H_b and H_c), 6.50-7.50 (m, aromatic protons, 8H). ¹³C Nmr (CDCl₃) δ 20.9 (Me), 55.2 (OMe), 99.3 (C₅), 113.8 (C₁₄), 117.9 (C₁₂), 127.0 (C₆ and C₁₁), 127.3 (C₁₇), 127.6 (C₇ and C₁₀), 129.3 (C_{18}) , 129.8 $(C_8, C_9 \text{ and } C_{13})$, 130.0 (C_{19}) , 135.7 (C_{16}) , 153.5 (C_3) , 161.0 (C_{15}) . 3f: mp 142-143°C (from benzene). Hrms: m/z 328.1583. Calcd for C22H20N2O: m/z 328.1575. Ms m/z (rel intensity): 328 (M⁺,4), 117 (100), 78 (100). ¹H Nmr (CDCl₃) δ 2.27 (s, 3H, Me), 2.32 (s, 3H, Me), 6.04 (m, 2H, H_a), 6.42 (m, 4H, H_b and H_c), 6.72-7.44 (m, 8H, aromatic protons). ¹³C Nmr (CDCl₃) δ 20.9 (Me), 21.4 (Me), 99.4 (C₅), 122.8 (C₁₂), 126.9 (C₆) and C_{11}), 127.3 (C_{17}), 127.6 (C_7 and C_{10}), 128.1 (C_{13} or C_{14}), 129.1 (C_{14} or C_{13}), 129.3 (C_{18}) , 129.7 $(C_8 \text{ and } C_9)$, 135.5 $(C_{16} \text{ or } C_{19})$, 135.7 $(C_{19} \text{ or } C_{16})$, 140.3 (C_{15}) , 153.7 (C₃). 3g: mp 90-92°C (from benzene). Hrms: m/z 350.0978. Calcd for C₂₁H₁₇N₂OCI: m/z 350.0998. Ms m/z (rel intensity) : 348 (M⁺, 2), 133 (100). ¹H Nmr (CDCl₃) δ 2.20 (s, 3H, Me), 5.90 (m, 2H, H_a), 6.40 (m, 4H, H_b and H_c), 6.60–7.50 (m, 8H, aromatic protons). ¹³C Nmr (CDCl₃) δ 21.0 (Me), 99.9 (C₅), 124.4 (C₁₂ or C₁₅), 127.1 (C₆ and C₁₁), 127.3 (C₁₇), 127.5 (C_7 and C_{10}), 128.7 (C_{13} or C_{14}), 129.5 (C_{14} or C_{13} and C_{18}), 129.8 (C_8 and C_9), 130.0 (C_{19}), 135.3 (C_{16}), 136.1 (C_{15} or C_{12}), 152.9 (C_3).

6. Upon heating at 60°C for 50 h 3c gave an isomer (4) whose structure was tentatively specurated to be shown in the figure according to the following spectral data: Ms m/z (rel intensity): 334 (M⁺, 8), 180 (100). ¹H Nmr (CDCl₃) δ 2.55 (dd, 2H, H_a and H_b), 5.30-5.55 (m, 2H, H_c and H_d), 6.15 (d, H_e), 6.87 (d, H_f), 7.10-7.50 (m, 9H, aromatic protons). The detailed investigation on this reaction is now in progress.

- 7. H. Suga and T. Ibata, Chem. Lett., 1991, 1221.
- 8. K. Saito, S. Isobe, K. Ito, S. Kagabu, and K. Takahashi, Chem. Lett., 1989, 1541.

Received, 27th July, 1992