STEREOCHEMISTRY OF BERBINE AND SOME RELATED COMPOUNDS

Georges Memetzidis, Louis Jung, and Jean-Francois Stambach*

Laboratoire de Chimie Thérapeutique, U.F.R. des Sciences Pharmaceutiques, 74, route de Rhin, B.P. 24, F 67401 Illkirch, France

<u>Abstract</u> - The stereochemistry of berbines (1-15) and their berbane (16) and berbinanes (17 and 18) derivatives was established on the basis of their ir, ¹H-nmr, ¹³C-nmr spectral data and the rates of methiodide formation. All the compounds in this study were found to have a trans-B/C conformation whereas berbinane (18) had a cis-A/B configuration.

Berbines comprise a large group of alkaloids both of natural and synthetic origins.¹ The berbine skeleton is formed by a 5,6,13,13a-tetrahydro-8*H*-dibenzo[*a,g*]quinolizine system which can exist as one *trans* (a) form and two *cis* (b,c) forms according to the B/C ring junction.² (Scheme 1)

Scheme 1 - Orientations of the nitrogen lone electron pair of trans- and cis-berbines.

In the course of our recent work on berbine ring system we have synthesized a large number of analogues and some new derivatives saturated in the ring A or D.³ We established the

stereochemistry of some compounds (Table 1) on the basis of their ir, ¹H-nmr and ¹³C-nmr spectral data and the measurement of the rate of methiodide formation. We report here our findings in this area.

Table 1 - Structure of berbine compounds (1-18).

Ir correlations

The first spectroscopic criterion utilized to distinguish the trans-quinolizines from the cis-isomers is the presence or absence of Bohlmann bands in their ir spectra.⁴ The trans-quinolizines in which the lone electron pair on the nitrogen is *trans*-diaxial to at least two hydrogen atoms adjacent to it exhibit characteristic infrared bands between 2700 and 2800 cm⁻¹.

Although some authors have shown clearly the limitation of exclusive qualitative dependence on the Bohlmann bands for assignment of stereochemistry for B/C ring junction in quinolizine systems,⁵ this method has been applied successfully in the structural assignment of many natural and synthetic alkaloids.⁶ In our case all the synthesized quinolizines (Table 1) showed two prominent infrared bands at 2800-2810 and 2750-2760 cm⁻¹ and therefore fulfiled the Bohlmann criterion for a *trans*-B/C ring junction.

¹H-Nmr correlations

Next to infrared spectroscopy the most widely used physical method in steroisomeric studies of berbine alkaloids is the ¹H-nmr spectroscopy.⁷

Our ¹H-nmr analyses were concentrated on the chemical shift difference between the two H₈ protons and the angular H_{13a} proton signals (Table 2).

Table	2 •	¹ H-Nmr	chemical	shifts	(δ,	ppm)	and	coupling	constants	(J,	Hz) for	compound	s (1-
15,17,	,18)	(5 mg/0).5 ml).										

Compound	1	2	3	4	5	6	7	3 9	10	11	12	13	14	15	17	18
Solvent °	a	а	b	а	а	а	b a	a b	a	а	а	a	а	а	а	a
δ H _{8eq}	3.99	3.92	3.86	3.98	3.98	4.02	3.87 4.	01 3.8	89 3.99	3.93	3.91	3.96	3.99	3.98	3.83	3.81
δH8ax	3.70	3.69	3.47	3.67	3.67	3.71	3.51 3.	73 3.5	51 3.69	3.68	3.65	3.68	3.69	3.70	3.52	3.20
J _{8eq,8ax}	14.6	14.7	14.4	14.4	14.4	14.8	15.2 15	.1 14	.4 15.0) 14.4	14.6	14.8	15.3	15.1	14.4	14.9
δH13a	3.67	3.68	_*	3.67	3.67	3.70	-* 3 .	62 -	3.65	3.64	3.59	3.57	3.58	3.57	2.88	-*
Δδ H8eq-8ax	0.29	0.23	0.39	0.31	0.31	0.31	0.36 0.	28 0.3	8 0.30	0.25	0.26	0.28	0.30	0.28	0.31	0.61

° a CDCI3 and b DMSO-d6

* Obscured by other protons

Thus, in all spectra of berbine compounds, excepted for berbane (16), the H₈ protons appeared as an AB quartet with a large difference in their chemical shifts (0.25-0.61 ppm) characteristic of a *trans*-B/C structure, while in a *cis*-B/C junction the spectal feature would be smaller (0.10-0.20 ppm).⁸ This difference has been attributed to the deshielding effect of the electron pair of the nitrogen atom. In a *trans*-fused system only the equatorial proton is deshielded but in a *cis*-fused system both protons are equally affected, since the lone pair bisects the angle between the geminal protons. However some authors have reported that in berbines with a 10,11-substitution pattern the H₈ protons appeared as a broad singlet at 4.05 ppm.⁹ (Scheme 1)

Furthermore the *trans*-B/C junction in these compounds was confirmed by the signal of the angular H_{13a} proton which resonated at a higher field than 3.8 ppm (Table 2), whereas a *cis* conformation was characterized by a downfield signal below 3.8 ppm.¹⁰ By this criterion was also confirmed the *trans*-B/C conformation for berbane (16) but not for berbinanes (17 and 18). In these latter compounds the saturation of the aromatic ring A induced an upfield shift for H_{13a} proton signal. In contrast compounds 17 and 18 exhibited an AB quartet of the H₈ protons like berbines and their differences in chemical shift (0.31 and 0.61 ppm) agreed with a B/C *trans*-fused system.

Moreover **18** exhibited an upfield shift (0.30 ppm) for the H_{8ax} proton compared to **17**. This could be attributed to an optimal orientation of H_{8ax} with respect to the nitrogen lone pair in *trans*-diaxial position imposed by the dramatic change of the A/B junction.¹¹

¹³C-Nmr correlations

¹³C-Nmr is generally recognized as one of the most useful spectroscopic techniques available for stereochemical assignment and structure elucidation.¹²

In the ¹³C-nmr spectra of some berbines and their derivatives (Table 3), the assignments of the chemical shifts are based on the comparison of the spectra and the use of the half-decoupled technique.¹³ It was expected that some of the carbons (C-6, C-8, C-13, C-13a) of a *cis*-quinolizine would resonate at a higher field than in a *trans*-quinolizine owing to γ -steric effects (Table 4).¹⁴

110

[Compound								
Carbon	1	4	2	12	17	16	18		
C - 1	125.4	125.4	125.4	108.6	25.9	108.3	21.2		
C-2	126.0	126.0	126.0	147.4	22.6	147.2	25.0		
C - 3	126.0	126.0	126.0	147.4	22.9	147.2	20. 9		
C-4	128.8	128.8	128.8	111.3	30.0	111.2	31.7		
C - 4a	134.5	134.5	134.5	126.5	127.5	127.0	36.6		
C - 5	29.4	29.5	29.5	29.1	30.2	29.4	26.8		
C-6	51.2	51.2	51.1	51.4	50.9	51.2	57.5		
C - 8	58.6	58.1	58.6	58.4	58.1	59.2	58.9		
C - 8a	134.4	126.7	127.4	124.2	126.7	126.6	126.3		
C-9	125.8	127.0	106.0	108.0	108.9	27.3	108.7		
C - 10	126.1	112.2	146.0	146.1	147.1	22.7	147.4		
C - 11	126.1	158.0	146.1	134.5	147.2	22.7	147.0		
C - 12	128.7	113.2	108.5	114.8	111.4	29.0	110.7		
C - 12a	134.4	135.6	127.3	126.7	126.5	126.4	125.7		
C - 13	36.6	36.9	36.6	36.1	33.5	38.2	32.1		
C - 13a	59.8	59.8	59.8	59.7	61.3	59.5	61.9		
C - 13b	137.8	137.8	137.8	130.0	128.4	130.2	40.3		
СН3О	-	55.2	-	55.8(X3)	55.9(X2)	56.0(X2)	55.9(X2)		
0-CH2-O	-	-	100.6	-	-	-	-		

Table 3 - $^{13}\text{C-Nmr}$ chemical shifts ($\delta,$ ppm) of berbine compounds.

Table 4 - Characteristic shift ranges (δ , ppm) of berbine compounds.

Conformation	cis	trans
Carbon C-6	48.0 ± 1.0	51.3 ± 0.2
C-8	55.0 ± 2.0	57.0 ± 2.0
C-13	32.5 ± 0.5	36.5 ± 0.5
C-13a	55.5 ± 0.5	59.5 ± 0.5

The comparison of these values with the chemical shifts listed in Table 3 showed unambiguously that berbines (1,2,4,12) have a *trans*-B/C junction. And the ring B,C carbon shifts of berbinane (17) and berbane (16) were nearly identical with those exhibited by compounds (1,2,4,12) indicating also a *trans*-B/C quinolizine structure.

In contrast berbinane (18) has three asymmetric centers (C-4a, C-13a, C-13b), which gives rise to the possibility of four configurations analogous to those of berbanes: "normal", "allo", "epiallo" and "pseudo".¹⁵ (Scheme 2)

Scheme 2 - Possible configurations of berbinane (18).

The "pseudo" and "epiallo" stereoisomers were excluded by the downfield shifts of the bridgehead methine (C-13a) and the aminomethylenes (C-8, C-6) which revealed unambiguously a *trans*-B/C structure like berbines (Table 3). This was also confirmed by ¹H-nmr and ir results. Furthermore, the differentiation between the "normal" and the "allo" isomers was based on the shielding of certain carbons in this latter configuration owing to γ -interactions.¹⁶ Thus, in the "allo" configuration, because of the A/B *cis*-junction, C-13 and C-5 carbons experienced a large shielding by C-1 and C-3 carbons respectively. These γ -interactions are very weak in planar structures like berbine (1). (Scheme 3)

Scheme 3 - Influence of y-interactions on C-5 and C-13 chemical shifts of berbines.

Rates of methiodide formation

The use of the rates of methiodide formation in the determination of quinolizine alkaloids stereochemistry was introduced by Shamma *et al.*¹⁷ The experimentally observed pseudo first-order rates of *N*-methylation for berbine series are shown in Table 5.

7 H H OH H 40.0 3 H H H OH 39.2 15 OCH3 OCH3 OCH3 H 38.0 16 (berbane) OCH3 OCH3 - - 37.2 1 H H H H 36.0 4 H H H 35.6 8 H H OCH3 OCH3 35.6 8 H H OCH3 OCH3 34.0 2 H H OCH2-O 32.1 31.4 13 OCH3 OCH3 OCH3 NHC02C2H5 31.4 12 OCH3 OCH3 OCH3 NH2 31.2 5 H H H OC2H5 31.0 11 H OCH3 OCH3	Compound	R ₁	R ₂	R ₃	R ₄	Kx10 ⁻⁴ (25°C)
3 H H H OH 39.2 15 OCH3 OCH3 OCH3 H 38.0 16 (berbane) OCH3 OCH3 - - 37.2 1 H H H 36.0 4 H H H 36.0 4 H H H 36.0 4 H H OCH3 35.6 8 H H OCH3 34.0 2 H H OCH3 OCH3 34.0 2 H H OCH2-O 32.1 13 OCH3 OCH3 OCH3 NHCO2C2H5 31.4 12 OCH3 OCH3 OCH3 NH2 31.2 5 H H H OC2H5 31.0 11 H H OCH3 NH2 30.0 9 H H OH 29.8 30.0 9 H H OCH3 OCH3 28.0 14 OCH3	7	н	Н	ОН	н	40.0
15 OCH3 OCH3 OCH3 H 38.0 16 (berbane) OCH3 OCH3 - - 37.2 1 H H H H 36.0 4 H H H 35.6 8 H H OCH3 OCH3 35.6 8 H H OCH3 OCH3 35.6 17 (berbinane) - - OCH3 OCH3 34.0 2 H H O-CH2-O 32.1 13 OCH3 OCH3 OCH3 NHCO2C2H5 31.4 12 OCH3 OCH3 OCH3 NH2 31.2 5 H H H OC2455 31.0 11 H H OCH3 NH2 30.0 9 H H OH CI 29.8 6 H H H OCOCH3 28.0 14 OCH3 OCH3 OCH3 CI 27.8 10 H H OCH3	3	н	н	н	ОН	39.2
16 (berbane) OCH3 OCH3 - - 37.2 1 H H H H 36.0 4 H H H OCH3 35.6 8 H H OCH3 H 34.6 17 (berbinane) - - OCH3 OCH3 34.0 2 H H O-CH2-O 32.1 13 OCH3 OCH3 OCH3 NHCO2C2H5 31.4 12 OCH3 OCH3 OCH3 NH2 31.2 5 H H H OC22LH5 31.0 11 H H OCH3 NH2 31.2 5 H H H O22H5 31.0 11 H H OCH3 NH2 30.0 9 H H OH CI 29.8 6 H H H OCOCH3 28.0 14 OCH3 OCH3 OCH3 CI 27.8 10 H H OC	15	OCH ₃	OCH ₃	OCH ₃	н	38.0
1 H H H H 36.0 4 H H H OCH3 35.6 8 H H OCH3 H 34.6 17 (berbinane) - - OCH3 OCH3 34.0 2 H H O-CH2-O 32.1 13 OCH3 OCH3 OCH3 NHCO2C2H5 31.4 12 OCH3 OCH3 OCH3 NH2 31.2 5 H H H OC2H5 31.0 11 H H OCH3 NH2 30.0 9 H H OCH3 NH2 30.0 14 OCH3 OCH3 OCH3 CI 29.8 10 H H OCH3 CI 27.8 10 H H OCH3	16 (berbane)	OCH ₃	OCH ₃	-	-	37.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	н	н	н	Н	36.0
8 H H OCH3 H 34.6 17 (berbinane) - - OCH3 OCH3 34.0 2 H H O-CH2-O 32.1 13 OCH3 OCH3 OCH3 NHCO2C2H5 31.4 12 OCH3 OCH3 OCH3 NH2 31.2 5 H H H OC2H5 31.0 11 H H OCH3 NH2 30.0 9 H H OCH3 29.8 30.0 14 OCH3 OCH3 OCH3 28.0 14 OCH3 OCH3 CI 27.8 10 H H OCH3 CI 26.0 18 (berbinane) - -	4	н	н	н	OCH ₃	35.6
17 (berbinane)OCH3OCH334.02HHO-CH2-O32.113OCH3OCH3OCH3NHCO2C2H531.412OCH3OCH3OCH3NH231.25HHHOC2H531.011HHOCH3NH230.09HHOHCI29.86HHHOCOCH328.014OCH3OCH3OCH3CI27.810HHOCH3CI26.018 (berbinane)OCH3OCH322.9	8	н	H	OCH ₃	Н	34.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 (berbinane)	-	-	OCH ₃	OCH ₃	34.0
13 OCH_3 OCH_3 OCH_3 OCH_3 $NHCO_2C_2H_5$ 31.4 12 OCH_3 OCH_3 OCH_3 NH_2 31.2 5HHH OC_2H_5 31.0 11HH OCH_3 NH_2 30.0 9HHOHCI 29.8 6HHH $OCOCH_3$ 28.0 14 OCH_3 OCH_3 OCH_3 CI 27.8 10HH OCH_3 CI 26.0 18 (berbinane) OCH_3 OCH_3 22.9	2	н	н	O-CH ₂ -O		32.1
12 OCH_3 OCH_3 OCH_3 NH_2 31.2 5HHH OC_2H_5 31.0 11HH OCH_3 NH_2 30.0 9HHOHCI 29.8 6HHHOCOCH_3 28.0 14 OCH_3 OCH_3 OCH_3 CI 27.8 10HHOCH_3CI 26.0 18 (berbinane) OCH_3 OCH_3 22.9	13	OCH ₃	OCH ₃	OCH ₃	NHCO ₂ C ₂ H ₅	31.4
5HHH OC_2H_5 31.011HH OCH_3 NH_2 30.09HHOHCI29.86HHHOCOCH_328.014OCH_3OCH_3OCH_3CI27.810HHOCH_3CI26.018 (berbinane)OCH_3OCH_322.9	12	OCH ₃	OCH ₃	OCH ₃	NH ₂	31.2
11 H H OCH3 NH2 30.0 9 H H OH CI 29.8 6 H H H OCOCH3 28.0 14 OCH3 OCH3 OCH3 CI 27.8 10 H H OCH3 CI 26.0 18 (berbinane) - - OCH3 OCH3 22.9	5	н	Н	н	OC ₂ H ₅	31.0
9 H H OH CI 29.8 6 H H H OCOCH3 28.0 14 OCH3 OCH3 OCH3 CI 27.8 10 H H OCH3 CI 26.0 18 (berbinane) - - OCH3 OCH3 22.9	11	Н	Н	OCH ₃	NH ₂	30.0
6 H H H OCOCH3 28.0 14 OCH3 OCH3 OCH3 CI 27.8 10 H H OCH3 CI 26.0 18 (berbinane) - - OCH3 OCH3 22.9	9	н	Н	OH	CI	29.8
14 OCH3 OCH3 OCH3 CI 27.8 10 H H OCH3 CI 26.0 18 (berbinane) - - OCH3 OCH3 22.9	6	н	Н	Н	OCOCH ₃	28.0
10 H H OCH3 CI 26.0 18 (berbinane) - - OCH3 OCH3 22.9	14	OCH ₃	OCH ₃	OCH ₃	CI	27.8
18 (berbinane) OCH3 OCH3 22.9	10	н	н	OCH ₃	CI	26.0
	18 (berbinane)	-	-	OCH3	OCH ₃	22.9

Table 5 - Rates of N-methylation for berbine compounds (1-18).

Initial inspection of this table shows that the rates are of medium magnitude: $k < 45 \times 10^{-4}$ sec⁻¹, which is consistent with a *trans*-B/C conformation.¹⁸ A *cis*-B/C quinolizine reacted at a much faster rate: $k > 60 \times 10^{-4}$ sec⁻¹. It is also noted that the rate of methylation was enhanced by the presence of free phenolic hydroxyl groups for **3**, **7**, but in contrast is decreased in the presence of chlorine atom for **9**,**10**,**14**, or other withdrawning groups like OCOCH₃ for **6**. Thus, the effect of substitution pattern on the basicity of nitrogen becomes another important factor besides stereochemical considerations.

In the case of 16,17, the saturation of the aromatic ring, D or A respectively, did not change the value of k relative to 1, because of the planarity of the structure which was preserved in both cases. However for 18 which possess an "allo" structure (bended structure), the A/B *cis*-fusion cause a steric hindrance to the nucleophilic nitrogen resulting in a much slower rate of methylation: $k = 22.9 \times 10^{-4} \text{ sec}^{-1}$ compared to 1 ($k = 36 \times 10^{-4} \text{ sec}^{-1}$). These results confirmed our ¹³C-nmr findings about the stereochemistry of 18 and showed the validity of this physical method as an accessory tool in quinolizine structure determination.

EXPERIMENTAL

Spectroscopic data for all compounds were recorded on Beckmann 4230 (ir) and Brucker AC 200 (nmr) instruments. All the ¹³C-nmr spectra were obtained in CDCl₃ after 10.000 pulses with intervals of 2.5 sec. The ¹³C-nmr chemical shifts were measured with respect to internal TMS : δ (TMS) = 0 ppm and δ (CHCl₃) = 77.2 ppm. The rates of methiodide formation were determined on 5 mg of sample in acetonitrile solution at 25 °C, using a Tacussel CD6 conductivity cell, as described in reference 17.

REFERENCES

1. S. F. Dyke, 'Rodd's Chemistry of Carbon Compounds', Vol. IV H, ed. by S. Coffey, Elsevier, Amsterdam, 1978, pp. 110 - 145; G. D. Pandey and K. P. Tiwari, <u>Heterocycles</u>, 1980, 14, 59.

2. B. Pai, K. Nagarajan, H. Suguna, and S. Natarajan, Heterocycles, 1977, 6, 1377.

3. G. Memetzidis, J. F. Stambach, and L. Jung, <u>Heterocycles</u>, 1990, 31, 341; G. Memetzidis, J. F. Stambach, L. Jung, C. Schott, C. Heitz, and J. C. Stoclet, <u>Eur. J. Med. Chem</u>., 1991, 26, 605; J. F. Stambach and L. Jung, <u>Heterocycles</u>, 1991, 32, 1571.

4. F. Bohlmann, Chem. Ber., 1958, 91, 2157; F. Bohlmann, D. Schumann, and M. Schulz, <u>Tetrahedron Lett.</u>, 1964, 173.

5. C. Johnson, R. Jones, A. Katritzky, C. Palmer, K. Schofield, and R. Wells, <u>J. Chem. Soc</u>., 1965, 6797; J. Sircar and A. Meyers, <u>J. Org. Chem.</u>, 1967, 32, 1248; N. Takao and K. Iwasa, <u>Chem.</u> <u>Pharm. Bull</u>., 1976, 24, 3185.

6. T. A. Crabb, R. F. Newton, and D. Jackson, <u>Chem. Rev.</u>, 1971, 71, 109; V. M. Kolb and M. Stefanovic, <u>Tetrahedron</u>, 1974, 30, 2233.

7. D. Tourwe, G. Van Binst, and T. Kametani, <u>Org. Magn. Reson</u>., 1977, 9, 341; B. R. Pai, K. Nagarajan, H. Suguna, and S. Natarajan, <u>Heterocycles</u>, 1978, 9, 1287.

8. C. K. Yu, D. B. MacLean, R. G. A. Rodrigo, and R. H. F. Manske, <u>Can. J. Chem.</u>, 1970, 48, 3673; T. R. Govindachari, K. Nagarajan, R. Charubala, B. R. Pai, and P. S. Subramanian, <u>Indian J. Chem.</u>, 1970, 8, 769.

9. F. C. Ohiri, R. Verpoorte, and A. B. Svendsen, Planta medica, 1983, 49, 162.

10. M. Uskokovic, H. Bruderer, C. Von Planta, T. Williams, and A. Brossi, <u>J. Am. Chem. Soc</u>., 1964, 86, 3364.

11. J. B. Lambert and R. G. Keske, Tetrahedron Lett., 1969, 2023.

 P. S. Pregosin and E. W. Randall, 'Determination of Organic Structures by Physical Methods', Vol. 4, Academic Press, 1971, pp. 263-318.

13. E. Wenkert, J. S. Bindra, C. J. Chang, D. W. Cochran, and F. M. Schell, <u>Acc. Chem. Res</u>., 1974, 7, 46; E. Wenkert, B. Chauncy, K. G. Dave, A. R. Jeffcoat, F. M. Schell, and H. P. Schenk, <u>J. Am.</u> <u>Chem. Soc</u>., 1973, 95, 8427; T. Kametani, A. Ujiie, M. Ihara, K. Fukumoto, and H. Koizumi, <u>Heterocycles</u>, 1975, 3, 371.

14. D. M. Grant and B. V. Cheney, <u>J. Am. Chem. Soc.</u>, 1967, 89, 5315; T. Kametani, K. Fukumoto, M. Ihara, A. Ujiie, and H. Koizumi, <u>J. Org. Chem.</u>, 1975, 40, 3280.

15. W. F. Trager, C. M. Lee, and A. H. Beckett, <u>Tetrahedron</u>, 1967, 23, 365; L. Szabo, K. Honty, L. Toke, and Cs. Szantay, <u>Chem. Ber</u>., 1972, 105, 3215; I. Toth, L. Szabo, M. Kajtar - Peredi, E. Baitz - Gacs, L. Radics, and Cs. Szantay, <u>Tetrahedron</u>, 1978, 34, 2113.

16. E. Wenkert, C. J. Chang, H. P. S. Chawla, D. W. Cochran, E. W. Hagaman, J. C. King, and K. Orito, J. Am. Chem. Soc. , 1976, 98, 3645.

17. M. Shamma and J. M. Richey, J. Am. Chem. Soc. , 1963, 85, 2507.

18. M. Shamma, C. D. Jones, and J. A. Weiss, Tetrahedron, 1969, 25, 4347; B. R. Pai, S. Natarajan,

H. Suguna, and G. Manikumar, <u>J. Org. Chem.</u>, 1978, 43, 1994.

Received, 27th July, 1992